Proteostasis in striatal cells and selective neurodegeneration in Huntington's disease

被引:26
作者
Margulis, Julia [1 ,2 ,3 ]
Finkbeiner, Steven [1 ,2 ,3 ,4 ]
机构
[1] J David Gladstone Inst, Gladstone Inst Neurol Dis, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Dept Neurol, San Francisco, CA USA
[3] Univ Calif San Francisco, Dept Physiol, San Francisco, CA USA
[4] Taube Koret Ctr Huntingtons Dis Res, San Francisco, CA USA
基金
美国国家卫生研究院;
关键词
striatum; proteostasis; autophagy; proteasome; Huntington's disease; TRANSGENIC MOUSE MODEL; HEAT-SHOCK RESPONSE; NEURONAL INTRANUCLEAR INCLUSIONS; UBIQUITIN-PROTEASOME SYSTEM; MUTANT HUNTINGTIN; POLYGLUTAMINE AGGREGATION; DYSTROPHIC NEURITES; BODY FORMATION; SPINY NEURONS; DUAL ROLE;
D O I
10.3389/fncel.2014.00218
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Selective neuronal loss is a hallmark of neurodegenerative diseases, including Huntington's disease (HD). Although mutant huntingtin, the protein responsible for HD, is expressed ubiquitously, a subpopulation of neurons in the striatum is the first to succumb. In this review, we examine evidence that protein quality control pathways, including the ubiquitin proteasome system, autophagy, and chaperones, are significantly altered in striatal neurons. These alterations may increase the susceptibility of striatal neurons to mutant huntingtin-mediated toxicity. This novel view of HD pathogenesis has profound therapeutic implications: protein homeostasis pathways in the striatum may be valuable targets for treating HD and other misfolded protein disorders.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Selective deficits in the expression of striatal-enriched mRNAs in Huntington's disease
    Desplats, PA
    Kass, KE
    Gilmartin, T
    Stanwood, GD
    Woodward, EL
    Head, SR
    Sutcliffe, JG
    Thomas, EA
    JOURNAL OF NEUROCHEMISTRY, 2006, 96 (03) : 743 - 757
  • [22] New Avenues for the Treatment of Huntington's Disease
    Kim, Amy
    Lalonde, Kathryn
    Truesdell, Aaron
    Welter, Priscilla Gomes
    Brocardo, Patricia S.
    Rosenstock, Tatiana R.
    Gil-Mohapel, Joana
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (16)
  • [23] Targeting Glial Cells to Elucidate the Pathogenesis of Huntington's Disease
    Hsiao, Han-Yun
    Chern, Yijuang
    MOLECULAR NEUROBIOLOGY, 2010, 41 (2-3) : 248 - 255
  • [24] Pallidal neuronal discharge in Huntington's disease: Support for selective loss of striatal cells originating the indirect pathway
    Starr, Philip A.
    Kang, Gail A.
    Heath, Susan
    Shimamoto, Shoichi
    Turner, Robert S.
    EXPERIMENTAL NEUROLOGY, 2008, 211 (01) : 227 - 233
  • [25] Mn(II) Quinoline Complex (4QMn) Restores Proteostasis and Reduces Toxicity in Experimental Models of Huntington's Disease
    Merino, Marian
    Sequedo, Maria Dolores
    Sanchez-Sanchez, Ana Virginia
    Clares, Ma Paz
    Garcia-Espana, Enrique
    Vazquez-Manrique, Rafael P.
    Mullor, Jose L.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (16)
  • [26] Disrupted striatal neuron inputs and outputs in Huntington's disease
    Reiner, Anton
    Deng, Yun-Ping
    CNS NEUROSCIENCE & THERAPEUTICS, 2018, 24 (04) : 250 - 280
  • [27] Striatal Network Models of Huntington's Disease Dysfunction Phenotypes
    Zheng, Pengsheng
    Kozloski, James
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2017, 11
  • [28] Striatal circuit development and its alterations in Huntington's disease
    Lebouc, Margaux
    Richard, Quentin
    Garret, Maurice
    Baufreton, Jerome
    NEUROBIOLOGY OF DISEASE, 2020, 145
  • [29] Striatal network modeling in Huntington's Disease
    Ponzi, Adam
    Barton, Scott J.
    Bunner, Kendra D.
    Rangel-Barajas, Claudia
    Zhang, Emily S.
    Miller, Benjamin R.
    Rebec, George V.
    Kozloski, James
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (04)
  • [30] Network model of pathology spread recapitulates neurodegeneration and selective vulnerability in Huntington's Disease
    Raj, Ashish
    Powell, Fon
    NEUROIMAGE, 2021, 235