Proteostasis in striatal cells and selective neurodegeneration in Huntington's disease

被引:26
|
作者
Margulis, Julia [1 ,2 ,3 ]
Finkbeiner, Steven [1 ,2 ,3 ,4 ]
机构
[1] J David Gladstone Inst, Gladstone Inst Neurol Dis, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Dept Neurol, San Francisco, CA USA
[3] Univ Calif San Francisco, Dept Physiol, San Francisco, CA USA
[4] Taube Koret Ctr Huntingtons Dis Res, San Francisco, CA USA
基金
美国国家卫生研究院;
关键词
striatum; proteostasis; autophagy; proteasome; Huntington's disease; TRANSGENIC MOUSE MODEL; HEAT-SHOCK RESPONSE; NEURONAL INTRANUCLEAR INCLUSIONS; UBIQUITIN-PROTEASOME SYSTEM; MUTANT HUNTINGTIN; POLYGLUTAMINE AGGREGATION; DYSTROPHIC NEURITES; BODY FORMATION; SPINY NEURONS; DUAL ROLE;
D O I
10.3389/fncel.2014.00218
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Selective neuronal loss is a hallmark of neurodegenerative diseases, including Huntington's disease (HD). Although mutant huntingtin, the protein responsible for HD, is expressed ubiquitously, a subpopulation of neurons in the striatum is the first to succumb. In this review, we examine evidence that protein quality control pathways, including the ubiquitin proteasome system, autophagy, and chaperones, are significantly altered in striatal neurons. These alterations may increase the susceptibility of striatal neurons to mutant huntingtin-mediated toxicity. This novel view of HD pathogenesis has profound therapeutic implications: protein homeostasis pathways in the striatum may be valuable targets for treating HD and other misfolded protein disorders.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Targeting the proteostasis network in Huntington's disease
    Soares, Tania R.
    Reis, Sara D.
    Pinho, Brigida R.
    Duchen, Michael R.
    Oliveira, Jorge M. A.
    AGEING RESEARCH REVIEWS, 2019, 49 : 92 - 103
  • [2] Proteostasis in Huntington's disease: disease mechanisms and therapeutic opportunities
    Harding, Rachel J.
    Tong, Yu-feng
    ACTA PHARMACOLOGICA SINICA, 2018, 39 (05) : 754 - 769
  • [3] Dopaminergic signaling and striatal neurodegeneration in Huntington's disease
    Tang, Tie-Shan
    Chen, Xi
    Liu, Jing
    Bezprozvanny, Ilya
    JOURNAL OF NEUROSCIENCE, 2007, 27 (30) : 7899 - 7910
  • [4] Huntington's disease and striatal signaling
    Roze, Emmanuel
    Cahill, Emma
    Martin, Elodie
    Bonnet, Cecilia
    Vanhoutte, Peter
    Betuing, Sandrine
    Caboche, Jocelyne
    FRONTIERS IN NEUROANATOMY, 2011, 5 : 1 - 16
  • [5] Proteostasis in Huntington's disease: disease mechanisms and therapeutic opportunities
    Rachel J Harding
    Yu-feng Tong
    Acta Pharmacologica Sinica, 2018, 39 : 754 - 769
  • [6] Nuclear translocation of AMPK-α1 potentiates striatal neurodegeneration in Huntington's disease
    Ju, Tz-Chuen
    Chen, Hui-Mei
    Lin, Jiun-Tsai
    Chang, Ching-Pang
    Chang, Wei-Cheng
    Kang, Jheng-Jie
    Sun, Cheng-Pu
    Tao, Mi-Hua
    Tu, Pang-Hsien
    Chang, Chen
    Dickson, Dennis W.
    Chern, Yijuang
    JOURNAL OF CELL BIOLOGY, 2011, 194 (02) : 209 - 227
  • [7] Epigenetic Mechanisms of Neurodegeneration in Huntington's Disease
    Lee, Junghee
    Hwang, Yu Jin
    Kim, Ki Yoon
    Kowall, Neil W.
    Ryu, Hoon
    NEUROTHERAPEUTICS, 2013, 10 (04) : 664 - 676
  • [8] Mitochondrial bioenergetics and dynamics in Huntington's disease: tripartite synapses and selective striatal degeneration
    Oliveira, Jorge M. A.
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2010, 42 (03) : 227 - 234
  • [9] Quality Control in Huntington's Disease: a Therapeutic Target
    Rai, Sachchida Nand
    Singh, Brijesh Kumar
    Rathore, Aaina Singh
    Zahra, Walia
    Keswani, Chetan
    Birla, Hareram
    Singh, Saumitra Sen
    Dilnashin, Hagera
    Singh, Surya Pratap
    NEUROTOXICITY RESEARCH, 2019, 36 (03) : 612 - 626
  • [10] The interplay between redox signalling and proteostasis in neurodegeneration: In vivo effects of a mitochondria-targeted antioxidant in Huntington's disease mice
    Pinho, Brigida R.
    Duarte, Ana I.
    Canas, Paula M.
    Moreira, Paula I.
    Murphy, Michael P.
    Oliveira, Jorge M. A.
    FREE RADICAL BIOLOGY AND MEDICINE, 2020, 146 : 372 - 382