High Performance Porous Anode Based on Template-Free Synthesis of Co3O4 Nanowires for Lithium-Ion Batteries

被引:37
作者
Feng, Kun [1 ]
Park, Hey Woong [1 ]
Wang, Xiaolei [1 ]
Lee, Dong Un [1 ]
Chen, Zhongwei [1 ]
机构
[1] Univ Waterloo, Dept Chem Engn, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
cobalt oxide; nanowire; lithium-ion batteries; anode material; stainless steel mesh; ammonia-evaporation-induced reaction; ELECTROCHEMICAL PERFORMANCE; HIGH-CAPACITY; ELECTRODE; CARBON; NANOPARTICLES; ARRAYS; DEPOSITION; COMPOSITE;
D O I
10.1016/j.electacta.2014.07.005
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A facile template-free synthesis is developed to directly grow cobalt oxide (Co3O4) nanowires (NWs) on stainless steel (SS) mesh substrate as anode for lithium ion batteries (LIBs). The directly grown Co3O4 NWs on SS mesh are prepared via an ammonia-evaporation-induced method followed by calcination at 300 degrees C in air. SEM images show a SS mesh-sketched structure with densely grown NWs and ordered meshes on it. Free from the tedious and economically unfavorable electrode fabrication, Co3O4 NWs on SS mesh electrode simplifies the process by a direct growing technique. Furthermore, it better addresses the cycling stability and rate performance issues of Co3O4 by improving both ion and electron transportation. The charge and discharge capacities are stabilized at around 850 mAh g(-1) after 30 cycles with various current densities. After 100 cycles charge and discharge, Co3O4 NWs on SS mesh electrode still remains a capacity of 766 mAh g(-l). Together with its outstanding mechanical strength and flexibility, this novel electrode may find many applications in different types of LIBs. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:145 / 151
页数:7
相关论文
共 37 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]  
Bard L.R.F.A.J., 2001, ELECTROCHEMICAL METH, P231
[3]   Synthesis, characterization, and li-electrochemical performance of highly porous Co3O4 powders [J].
Binotto, G. ;
Larcher, D. ;
Prakash, A. S. ;
Urbina, R. Herrera ;
Hegde, M. S. ;
Tarascon, J-M. .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :3032-3040
[4]   Graphene wrapped silicon nanocomposites for enhanced electrochemical performance in lithium ion batteries [J].
Chabot, Victor ;
Feng, Kun ;
Park, Hey Woong ;
Hassan, Fathy M. ;
Elsayed, Abdel Rahman ;
Yu, Aiping ;
Xiao, Xingcheng ;
Chen, Zhongwei .
ELECTROCHIMICA ACTA, 2014, 130 :127-134
[5]   Voltammetric sensing of bisphenol A based on a single-walled carbon nanotubes/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode [J].
Chen, Xuemin ;
Ren, Tongqing ;
Ma, Ming ;
Wang, Zhengguo ;
Zhan, Guoqing ;
Li, Chunya .
ELECTROCHIMICA ACTA, 2013, 111 :49-56
[6]   Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries [J].
Chen, Yu ;
Xia, Hui ;
Lu, Li ;
Xue, Junmin .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (11) :5006-5012
[7]   3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries [J].
Choi, Bong Gill ;
Chang, Sung-Jin ;
Lee, Young Boo ;
Bae, Jong Seong ;
Kim, Hae Jin ;
Huh, Yun Suk .
NANOSCALE, 2012, 4 (19) :5924-5930
[8]   Co3O4 as anode material for thin film micro-batteries prepared by remote plasma atomic layer deposition [J].
Donders, M. E. ;
Knoops, H. C. M. ;
Kessels, W. M. M. ;
Notten, P. H. L. .
JOURNAL OF POWER SOURCES, 2012, 203 :72-77
[9]  
Dornbusch R.H.D.A., 2013, J ELECTROCHEM LETT, V2, pA89
[10]   Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates:: A highly efficient material for Li-battery applications [J].
Du, Ning ;
Zhang, Hui ;
Chen, Bindi ;
Wu, Jianbo ;
Ma, Xiangyang ;
Liu, Zhihong ;
Zhang, Yiqiang ;
Yang, Deren ;
Huang, Xiaohua ;
Tu, Jiangping .
ADVANCED MATERIALS, 2007, 19 (24) :4505-+