Fisher's scaling relation above the upper critical dimension

被引:31
|
作者
Kenna, R. [1 ]
Berche, B. [2 ]
机构
[1] Coventry Univ, Appl Math Res Ctr, Coventry CV1 5FB, W Midlands, England
[2] Univ Lorraine, Inst Jean Lamour, Stat Phys Grp, UMR CNRS 7198, F-54506 Vandoeuvre Les Nancy, France
关键词
5-DIMENSIONAL ISING-MODEL; CREUTZ CELLULAR-AUTOMATON; RENORMALIZATION-GROUP THEORY; PHASE-TRANSITIONS; FINITE; UNIVERSALITY;
D O I
10.1209/0295-5075/105/26005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fisher's fluctuation-response relation is one of four famous scaling formulae and is consistent with a vanishing correlation-function anomalous dimension above the upper critical dimension d(c). However, it has long been known that numerical simulations deliver a negative value for the anomalous dimension there. Here, the apparent discrepancy is attributed to a distinction between the system-length and correlation-or characteristic-length scales. On the latter scale, the anomalous dimension indeed vanishes above d(c) and Fisher's relation holds in its standard form. However, on the scale of the system length, the anomalous dimension is negative and Fisher's relation requires modification. Similar investigations at the upper critical dimension, where dangerous irrelevant variables become marginal, lead to an analogous pair of Fisher relations for logarithmic-correction exponents. Implications of a similar distinction between length scales in percolation theory above d(c) and for the Ginzburg criterion are briefly discussed. Copyright (c) EPLA, 2014
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Scaling above the upper critical dimension in Ising models
    Parisi, G
    RuizLorenzo, JJ
    PHYSICAL REVIEW B, 1996, 54 (06) : R3698 - R3701
  • [2] Finite-size scaling above the upper critical dimension
    Wittmann, Matthew
    Young, A. P.
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [3] Scaling at quantum phase transitions above the upper critical dimension
    Langheld, Anja
    Koziol, Jan Alexander
    Adelhardt, Patrick
    Kapfer, Sebastian
    Schmidt, Kai P.
    SCIPOST PHYSICS, 2022, 13 (04):
  • [4] Finite-size scaling in the φ4 theory above the upper critical dimension
    Chen, XS
    Dohm, V
    EUROPEAN PHYSICAL JOURNAL B, 1998, 5 (03): : 529 - 542
  • [5] Failure of universal finite-size scaling above the upper critical dimension
    Chen, XS
    Dohm, V
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 251 (3-4) : 439 - 451
  • [6] Violations of Hyperscaling in Finite-Size Scaling above the Upper Critical Dimension
    Young, A. Peter
    ENTROPY, 2024, 26 (06)
  • [7] FINITE-SIZE SCALING FOR THE ISING MODEL ABOVE THE UPPER CRITICAL DIMENSION
    Honchar, Yu.
    Berche, B.
    Holovatch, Yu.
    Kenna, R.
    JOURNAL OF PHYSICAL STUDIES, 2023, 27 (01):
  • [8] Gaussian scaling for the critical spread-out contact process above the upper critical dimension
    van der Hofstad, R
    Sakai, A
    ELECTRONIC JOURNAL OF PROBABILITY, 2004, 9 : 710 - 769
  • [9] Hyperscaling above the upper critical dimension
    Berche, B.
    Kenna, R.
    Walter, J. -C.
    NUCLEAR PHYSICS B, 2012, 865 (01) : 115 - 132
  • [10] Role of Fourier Modes in Finite-Size Scaling above the Upper Critical Dimension
    Flores-Sola, Emilio
    Berche, Bertrand
    Kenna, Ralph
    Weigel, Martin
    PHYSICAL REVIEW LETTERS, 2016, 116 (11)