Machine learning-based prediction of microsatellite instability and high tumor mutation burden from contrast-enhanced computed tomography in endometrial cancers

被引:51
作者
Veeraraghavan, Harini [1 ]
Friedman, Claire F. [2 ,6 ]
DeLair, Deborah F. [3 ,7 ]
Nincevic, Josip [4 ,8 ]
Himoto, Yuki [4 ,9 ]
Bruni, Silvio G. [4 ,10 ]
Cappello, Giovanni [4 ,11 ]
Petkovska, Iva [4 ]
Nougaret, Stephanie [4 ,12 ,13 ]
Nikolovski, Ines [4 ]
Zehir, Ahmet [3 ]
Abu-Rustum, Nadeem R. [5 ]
Aghajanian, Carol [2 ,6 ]
Zamarin, Dmitriy [2 ,6 ]
Cadoo, Karen A. [2 ,6 ]
Diaz, Luis A., Jr. [2 ,6 ]
Leitao, Mario M., Jr. [5 ]
Makker, Vicky [2 ,6 ]
Soslow, Robert A. [3 ]
Mueller, Jennifer J. [5 ]
Weigelt, Britta [3 ]
Lakhman, Yulia [4 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Med, 1275 York Ave, New York, NY 10021 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Pathol, 1275 York Ave, New York, NY 10021 USA
[4] Mem Sloan Kettering Canc Ctr, Dept Radiol, Body Imaging Serv, 1275 York Ave, New York, NY 10021 USA
[5] Mem Sloan Kettering Canc Ctr, Dept Surg, Gynecol Serv, 1275 York Ave, New York, NY 10021 USA
[6] Weill Cornell Med Coll, Dept Med, New York, NY USA
[7] NYU, Dept Pathol, Langone Med Ctr, 550 1St Ave, New York, NY 10016 USA
[8] Sisters Charity Hosp, Dept Radiol, Zagreb, Croatia
[9] Japanese Red Cross Wakayama Med Ctr, Dept Diagnost Radiol, Wakayama, Japan
[10] Trillium Hlth Partners, Dept Radiol, Mississauga, ON, Canada
[11] FPO IRCCS, Dept Radiol, Candiolo Canc Inst, Turin, Italy
[12] INSERM U1194, Inst Canc Res Montpellier IRCM, Dept Radiol, Montpellier, France
[13] Univ Montpellier, Montpellier Canc Inst, Dept Radiol, Montpellier, France
基金
日本学术振兴会;
关键词
PHASE-II TRIAL; REGULARIZATION PATHS; CARCINOMA; CLASSIFICATION; LANDSCAPE; DIAGNOSIS; SELECTION;
D O I
10.1038/s41598-020-72475-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To evaluate whether radiomic features from contrast-enhanced computed tomography (CE-CT) can identify DNA mismatch repair deficient (MMR-D) and/or tumor mutational burden-high (TMB-H) endometrial cancers (ECs). Patients who underwent targeted massively parallel sequencing of primary ECs between 2014 and 2018 and preoperative CE-CT were included (n=150). Molecular subtypes of EC were assigned using DNA polymerase epsilon (POLE) hotspot mutations and immunohistochemistry-based p53 and MMR protein expression. TMB was derived from sequencing, with >15.5 mutations-per-megabase as a cut-point to define TMB-H tumors. After radiomic feature extraction and selection, radiomic features and clinical variables were processed with the recursive feature elimination random forest classifier. Classification models constructed using the training dataset (n=105) were then validated on the holdout test dataset (n=45). Integrated radiomic-clinical classification distinguished MMR-D from copy number (CN)-low-like and CN-high-like ECs with an area under the receiver operating characteristic curve (AUROC) of 0.78 (95% CI 0.58-0.91). The model further differentiated TMB-H from TMB-low (TMB-L) tumors with an AUROC of 0.87 (95% CI 0.73-0.95). Peritumoral-rim radiomic features were most relevant to both classifications (p <= 0.044). Radiomic analysis achieved moderate accuracy in identifying MMR-D and TMB-H ECs directly from CE-CT. Radiomics may provide an adjunct tool to molecular profiling, especially given its potential advantage in the setting of intratumor heterogeneity.
引用
收藏
页数:10
相关论文
共 66 条
  • [1] Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research
    Apte, Aditya P.
    Iyer, Aditi
    Crispin-Ortuzar, Mireia
    Pandya, Rutu
    van Dijk, Lisanne V.
    Spezi, Emiliano
    Thor, Maria
    Um, Hyemin
    Veeraraghavan, Harini
    Oh, Jung Hun
    Shukla-Dave, Amita
    Deasy, Joseph O.
    [J]. MEDICAL PHYSICS, 2018, 45 (08) : 3713 - 3720
  • [2] Analysis of mutational signatures in primary and metastatic endometrial cancer reveals distinct patterns of DNA repair defects and shifts during tumor progression
    Ashley, Charles W.
    Paula, Arnaud Da Cruz
    Kumar, Rahul
    Mandelker, Diana
    Pei, Xin
    Riaz, Nadeem
    Reis-Filho, Jorge S.
    Weigelt, Britta
    [J]. GYNECOLOGIC ONCOLOGY, 2019, 152 (01) : 11 - 19
  • [3] Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas
    Beig, Niha
    Khorrami, Mohammadhadi
    Alilou, Mehdi
    Prasanna, Prateek
    Braman, Nathaniel
    Orooji, Mahdi
    Rakshit, Sagar
    Bera, Kaustav
    Rajiah, Prabhakar
    Ginsberg, Jennifer
    Donatelli, Christopher
    Thawani, Rajat
    Yang, Michael
    Jacono, Frank
    Tiwari, Pallavi
    Velcheti, Vamsidhar
    Gilkeson, Robert
    Linden, Philip
    Madabhushi, Anant
    [J]. RADIOLOGY, 2019, 290 (03) : 783 - 792
  • [4] Just how accurate are the major risk stratification systems for early-stage endometrial cancer?
    Bendifallah, S.
    Canlorbe, G.
    Collinet, P.
    Arsene, E.
    Huguet, F.
    Coutant, C.
    Hudry, D.
    Graesslin, O.
    Raimond, E.
    Touboul, C.
    Darai, E.
    Ballester, M.
    [J]. BRITISH JOURNAL OF CANCER, 2015, 112 (05) : 793 - 801
  • [5] Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer
    Braman, Nathaniel
    Prasanna, Prateek
    Whitney, Jon
    Singh, Salendra
    Beig, Niha
    Etesami, Maryam
    Bates, David D. B.
    Gallagher, Katherine
    Bloch, B. Nicolas
    Vulchi, Manasa
    Turk, Paulette
    Bera, Kaustav
    Abraham, Jame
    Sikov, William M.
    Somlo, George
    Harris, Lyndsay N.
    Gilmore, Hannah
    Plecha, Donna
    Varadan, Vinay
    Madabhushi, Anant
    [J]. JAMA NETWORK OPEN, 2019, 2 (04)
  • [6] Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI
    Braman, Nathaniel M.
    Etesami, Maryam
    Prasanna, Prateek
    Dubchuk, Christina
    Gilmore, Hannah
    Tiwari, Pallavi
    Pletcha, Donna
    Madabhushi, Anant
    [J]. BREAST CANCER RESEARCH, 2017, 19
  • [7] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [8] Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic
    Chan, T. A.
    Yarchoan, M.
    Jaffee, E.
    Swanton, C.
    Quezada, S. A.
    Stenzinger, A.
    Peters, S.
    [J]. ANNALS OF ONCOLOGY, 2019, 30 (01) : 44 - 56
  • [9] Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology
    Cheng, Donavan T.
    Mitchell, Talia N.
    Zehir, Ahmet
    Shah, Ronak H.
    Benayed, Ryma
    Syed, Aijazuddin
    Chandramohan, Raghu
    Liu, Zhen Yu
    Won, Helen H.
    Scott, Sasinya N.
    Brannon, A. Rose
    O'Reilly, Catherine
    Sadowska, Justyna
    Casanova, Jacklyn
    Yannes, Angela
    Hechtman, Jaclyn F.
    Yao, Jinjuan
    Song, Wei
    Ross, Dara S.
    Oultache, Alifya
    Dogan, Snjezana
    Borsu, Laetitia
    Hameed, Meera
    Nafa, Khedoudja
    Arcila, Maria E.
    Ladanyi, Marc
    Berger, Michael F.
    [J]. JOURNAL OF MOLECULAR DIAGNOSTICS, 2015, 17 (03) : 251 - 264
  • [10] ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: diagnosis, treatment and follow-up
    Colombo, N.
    Creutzberg, C.
    Amant, F.
    Bosse, T.
    Gonzalez-Martin, A.
    Ledermann, J.
    Marth, C.
    Nout, R.
    Querleu, D.
    Mirza, M. R.
    Sessa, C.
    [J]. ANNALS OF ONCOLOGY, 2016, 27 (01) : 16 - 41