Explicit bounds for L-functions on the edge of the critical strip

被引:3
作者
Lumley, Allysa [1 ]
机构
[1] York Univ, Dept Math & Stat, 4700 Keele St, Toronto, ON M3J 1P3, Canada
关键词
L-functions; Explicit results;
D O I
10.1016/j.jnt.2018.01.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assuming GRH and the Ramanujan-Petersson conjecture we prove explicit bounds for L(1, f) for a large class of L-functions L(s, f), which includes L-functions attached to automorphic cuspidal forms on GL(n). The proof generalizes work of Lamzouri, Li and Soundararajan. Furthermore, the main results improve the classical bounds of Littlewood (1 + o(1)) (12e(r)/pi(2) log log C(f)) (-d) <= vertical bar L(1, f)vertical bar <= (1 + o(1)) (2e(r) log log C (f)) (d), where C(f) is the analytic conductor of L(s, f). (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:186 / 209
页数:24
相关论文
共 8 条
[1]   EXPLICIT UPPER BOUNDS FOR L-FUNCTIONS ON THE CRITICAL LINE [J].
Chandee, Vorrapan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (12) :4049-4063
[2]  
Davenport H., 2000, MULTIPLICATIVE NUMBE
[3]  
DELIGNE P, 1974, ANN SCI ECOLE NORM S, V7, P507
[4]  
Deligne P., 1972, PUBL MATH-PARIS, V43, P206
[5]  
Iwaniec H., 2004, Colloquium Publications
[6]   CONDITIONAL BOUNDS FOR THE LEAST QUADRATIC NON-RESIDUE AND RELATED PROBLEMS [J].
Lamzouri, Youness ;
Li, Xiannan ;
Soundararajan, Kannan .
MATHEMATICS OF COMPUTATION, 2015, 84 (295) :2391-2412
[7]  
Littlewood JE., 1928, Proc. Lond. Math. Soc, V3, P358, DOI [10.1112/plms/s2-27.1.358, DOI 10.1112/PLMS/S2-27.1.358]
[8]   Explicit upper bounds for residues of Dedekind zeta functions and values of L-functions at s=1, and explicit lower bounds for relative class numbers of CM-fields [J].
Louboutin, S .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2001, 53 (06) :1194-1222