Classification of remote sensing images having high spectral resolution

被引:45
|
作者
Hoffbeck, JP
Landgrebe, DA
机构
[1] PURDUE UNIV,SCH ELECT & COMP ENGN,W LAFAYETTE,IN 47907
[2] AT&T BELL LABS,WHIPPANY,NJ 07981
基金
美国国家航空航天局;
关键词
D O I
10.1016/0034-4257(95)00138-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A method for classifying remote sensing data with high spectral dimensionality that combines the techniques of chemistry spectroscopy and pattern recognition is described in this paper. The technique uses an atmospheric adjustment to allow a human operator to identify and label training pixels by visually comparing the remotely sensed spectra to laboratory reflectance spectra. Training pixels for materials without easily identifiable spectra are labeled by traditional means. Linear combinations of the original radiance data are computed that maximize the separability of the classes and classified by a maximum likelihood classifier. No adjustment for the atmosphere or other scene variables is made to the data before classification. This technique is applied to Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data taken over Cuprite, Nevada in 1992, and the results are compared to an, existing geologic map. This technique performed well even for classes with similar spectral features and for classes without absorption features.
引用
收藏
页码:119 / 126
页数:8
相关论文
共 50 条
  • [41] High spectral resolution lidar for atmosphere remote sensing: a review
    State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou
    310027, China
    Hongwai yu Jiguang Gongcheng Infrared Laser Eng., 9 (2535-2546):
  • [42] An improved IHS fusion for high resolution remote sensing images
    Hu Youjian
    Zhang Xiaohua
    SECOND INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING, 2010, 7546
  • [43] A Road Extraction Method for High Resolution Remote Sensing Images
    Dai J.-G.
    Zhu T.-T.
    Zhang Y.-L.
    Ma R.-C.
    Wang X.-T.
    Zhang T.-D.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (11): : 2461 - 2471
  • [44] Semantic Descriptions of High-Resolution Remote Sensing Images
    Wang, Binqiang
    Lu, Xiaoqiang
    Zheng, Xiangtao
    Li, Xuelong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (08) : 1274 - 1278
  • [45] Lightweight Target Detection in High Resolution Remote Sensing Images
    Zhao, Zhe
    Chen, Jingwei
    Xi, Jiangbo
    Jiang, Wandong
    Xie, Dashuai
    Gao, Siyan
    Wang, Jie
    PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 3252 - 3260
  • [46] OBJECT COUNTING IN HIGH RESOLUTION REMOTE SENSING IMAGES WITH OTB
    Christophe, E.
    Inglada, J.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 3117 - +
  • [47] Shadow Free Urban High Resolution Remote Sensing Images
    Srinath, D.
    Simla, A. Jerrin
    Panimalar, S.
    Poonkuzhali, S. M.
    RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES, 2015, 6 (02): : 1856 - 1864
  • [48] Object detection methods for high resolution remote sensing images
    Liang, Haixiang
    Tang, Yanhui
    Wang, Yuqing
    Zhang, Dehao
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2024, 39 (10) : 1350 - 1360
  • [49] Land-Cover Classification With High-Resolution Remote Sensing Images Using Interactive Segmentation
    Xu, Leilei
    Liu, Yujun
    Shi, Shanqiu
    Zhang, Hao
    Wang, Dan
    IEEE ACCESS, 2023, 11 : 6735 - 6747
  • [50] Classification of High-Resolution Remote Sensing Images in the Feilaixia Reservoir Based on a Fully Convolutional Network
    Wu, Pinghao
    Zhong, Kaiwen
    Hu, Hongda
    Xu, Jianhui
    Wang, Yunpeng
    Zhao, Yi
    IEEE ACCESS, 2020, 8 : 161752 - 161764