Convergence analysis for a conformal discretization of a model for precipitation and dissolution in porous media

被引:18
作者
Kumar, K. [1 ]
Pop, I. S. [2 ,3 ]
Radu, F. A. [3 ]
机构
[1] Univ Texas Austin, Ctr Subsurface Modeling, Austin, TX 78712 USA
[2] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[3] Univ Bergen, Inst Math, Bergen, Norway
关键词
FINITE-ELEMENT DISCRETIZATION; REACTIVE SOLUTE TRANSPORT; CRYSTAL DISSOLUTION; STEFAN PROBLEM; SCHEME; EQUILIBRIUM; ADSORPTION; DIFFUSION; FLOWS; PORE;
D O I
10.1007/s00211-013-0601-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss the numerical analysis of an upscaled (core scale) model describing the transport, precipitation and dissolution of solutes in a porous medium. The particularity lies in the modeling of the reaction term, especially the dissolution term, which has a multivalued character. We consider the weak formulation for the upscaled equation and provide rigorous stability and convergence results for both the semi-discrete (time discretization) and the fully discrete schemes. In doing so, compactness arguments are employed.
引用
收藏
页码:715 / 749
页数:35
相关论文
共 49 条