Modeling of Coplanar Interdigital Capacitor for Microwave Microfluidic Application

被引:36
作者
Bao, Xiue [1 ]
Ocket, Ilja [1 ,2 ]
Bao, Juncheng [1 ]
Liu, Zhuangzhuang [3 ]
Puers, Bob [4 ]
Schreurs, Dominique M. M-P [1 ]
Nauwelaers, Bart [1 ]
机构
[1] Katholieke Univ Leuven, ESAT TELEMIC Div, B-3001 Leuven, Belgium
[2] Interuniv Microelect Ctr Imec, B-3001 Leuven, Belgium
[3] Katholieke Univ Leuven, Dept Mat Engn, B-3001 Leuven, Belgium
[4] Katholieke Univ Leuven, ESAT MICAS Div, B-3001 Leuven, Belgium
关键词
Conformal mapping; interdigital capacitor (IDC); microfluidic; microwave; sensor; FREQUENCY-CHARACTERISTICS; ELECTRODES CAPACITANCE; WAVE-GUIDES; LINES;
D O I
10.1109/TMTT.2019.2916871
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to its noninvasive property, the interdigital capacitor (IDC) has been applied in dielectric liquid detection and characterization. In order to integrate the IDC sensor on a lab-on-chip, it is often required to minimize and optimize the sensor for sensitive and efficient performance. However, the conventional numerical simulation approach is quite time-consuming. Therefore, an efficient analytical method is proposed herein, leading to accurate capacitance and conductance expressions of an arbitrary multilayer-structured IDC. The model is validated with practical measurements of a series of coplanar waveguide (CPW) structure-based IDCs. In addition, an accurate characterization function, which relates the IDC capacitance and conductance to the complex permittivity of a material loaded on the top of the IDC sensing area, is obtained. The characterization function shows good agreement with the finite-element method (FEM) simulation results, which demonstrates the capability of the IDC sensor in dielectric spectroscopy measurements of mu L and even nL liquids.
引用
收藏
页码:2674 / 2683
页数:10
相关论文
共 29 条
[2]   Broadband Dielectric Spectroscopy of Cell Cultures [J].
Bao, Xiue ;
Ocket, Ilja ;
Bao, Juncheng ;
Doijen, Jordi ;
Zheng, Ju ;
Kil, Dries ;
Liu, Zhuangzhuang ;
Puers, Bob ;
Schreurs, Dominique ;
Nauwelaers, Bart .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (12) :5750-5759
[3]   A Planar One-Port Microwave Microfluidic Sensor for Microliter Liquids Characterization [J].
Bao, Xiue ;
Ocket, Ilja ;
Crupi, Giovanni ;
Schreurs, Dominique ;
Bao, Juncheng ;
Kil, Dries ;
Puers, Bob ;
Nauwelaers, Bart .
IEEE JOURNAL OF ELECTROMAGNETICS RF AND MICROWAVES IN MEDICINE AND BIOLOGY, 2018, 2 (01) :10-17
[4]  
Bao XE, 2017, EUR MICROW CONF, P946, DOI [10.23919/eumc.2017.8231002, 10.23919/EuMC.2017.8231002]
[5]   Modelling the capacitance of multi-layer conductor-facing interdigitated electrode structures [J].
Blume, Steffen O. P. ;
Ben-Mrad, Ridha ;
Sullivan, Pierre E. .
SENSORS AND ACTUATORS B-CHEMICAL, 2015, 213 :423-433
[6]   Broadband permittivity measurements of liquid and biological samples using microfluidic channels [J].
Booth, James C. ;
Mateu, J. ;
Janezic, Michael ;
Baker-Jarvis, James ;
Beall, James A. .
2006 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-5, 2006, :1750-+
[7]  
Brown J.W., 2009, Complex Variables and Applications
[8]   Conformal mapping of the field and charge distributions in multilayered substrate CPW's [J].
Carlsson, E ;
Gevorgian, S .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1999, 47 (08) :1544-1552
[9]  
Chen L. F., 2004, MICROWAVE ELECT MEAS
[10]   Accurate Nanoliter Liquid Characterization Up to 40 GHz for Biomedical Applications: Toward Noninvasive Living Cells Monitoring [J].
Chen, Tong ;
Dubuc, David ;
Poupot, Mary ;
Fournie, Jean-Jacques ;
Grenier, Katia .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (12) :4171-4177