CRISPR-induced double-strand breaks trigger recombination between homologous chromosome arms

被引:25
作者
Brunner, Erich [1 ]
Yagi, Ryohei [2 ]
Debrunner, Marc [1 ]
Beck-Schneider, Dezirae [1 ]
Burger, Alexa [1 ]
Escher, Eliane [1 ]
Mosimann, Christian [1 ]
Hausmann, George [1 ]
Basler, Konrad [1 ]
机构
[1] Univ Zurich, Inst Mol Life Sci, Zurich, Switzerland
[2] Eidgenoss Tech Hsch Zurich, Inst Mol Syst Biol, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
POSITION EFFECT VARIEGATION; DROSOPHILA-MELANOGASTER; SEQUENCE FLANKING; GERMLINE; NANOS; CELLS; REARRANGEMENTS; MUTAGENESIS; GENETICS; PATHWAY;
D O I
10.26508/lsa.201800267
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-Cas9-based genome editing has transformed the life sciences, enabling virtually unlimited genetic manipulation of genomes: The RNA-guided Cas9 endonuclease cuts DNA at a specific target sequence and the resulting double-strand breaks are mended by one of the intrinsic cellular repair pathways. Imprecise double-strand repair will introduce random mutations such as indels or point mutations, whereas precise editing will restore or specifically edit the locus as mandated by an endogenous or exogenously provided template. Recent studies indicate that CRISPR-induced DNA cuts may also result in the exchange of genetic information between homologous chromosome arms. However, conclusive data of such recombination events in higher eukaryotes are lacking. Here, we show that in Drosophila, the detected Cas9-mediated editing events frequently resulted in germline-transmitted exchange of chromosome arms-often without indels. These findings demonstrate the feasibility of using the system for generating recombinants and also highlight an unforeseen risk of using CRISPR-Cas9 for therapeutic intervention.
引用
收藏
页数:11
相关论文
共 66 条
[1]   The CRISPR tool kit for genome editing and beyond [J].
Adli, Mazhar .
NATURE COMMUNICATIONS, 2018, 9
[2]  
Ashburner M., 2011, Drosophila: A Laboratory Handbook, V2
[3]   Applications of CRISPR technologies in research and beyond [J].
Barrangou, Rodolphe ;
Doudna, Jennifer A. .
NATURE BIOTECHNOLOGY, 2016, 34 (09) :933-941
[4]   Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System [J].
Bassett, Andrew R. ;
Tibbit, Charlotte ;
Ponting, Chris P. ;
Liu, Ji-Long .
CELL REPORTS, 2013, 4 (01) :220-228
[5]   Is Non-Homologous End-Joining Really an Inherently Error-Prone Process? [J].
Betermier, Mireille ;
Bertrand, Pascale ;
Lopez, Bernard S. .
PLOS GENETICS, 2014, 10 (01)
[6]  
Bhat KM, 1999, GENETICS, V151, P1479
[7]   An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases [J].
Bischof, Johannes ;
Maeda, Robert K. ;
Hediger, Monika ;
Karch, Francois ;
Basler, Konrad .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (09) :3312-3317
[8]  
Bopp D, 1999, DEVELOPMENT, V126, P5785
[9]   Dpp controls growth and patterning in Drosophila wing precursors through distinct modes of action [J].
Bosch, Pablo Sanchez ;
Ziukaite, Ruta ;
Alexandre, Cyrille ;
Basler, Konrad ;
Vincent, Jean-Paul .
ELIFE, 2017, 6
[10]   CRISPR germline engineering-the community speaks [J].
Bosley, Katrine S. ;
Botchan, Michael ;
Bredenoord, Annelien L. ;
Carroll, Dana ;
Charo, R. Alta ;
Charpentier, Emmanuelle ;
Cohen, Ron ;
Corn, Jacob ;
Doudna, Jennifer ;
Feng, Guoping ;
Greely, Henry T. ;
Isasi, Rosario ;
Ji, Weihzi ;
Kim, Jin-Soo ;
Knoppers, Bartha ;
Lanphier, Edward ;
Li, Jinsong ;
Lovell-Badge, Robin ;
Martin, G. Steven ;
Moreno, Jonathan ;
Naldini, Luigi ;
Pera, Martin ;
Perry, Anthony C. F. ;
Venter, J. Craig ;
Zhang, Feng ;
Zhou, Qi .
NATURE BIOTECHNOLOGY, 2015, 33 (05) :478-486