Wave dynamics on networks: Method and application to the sine-Gordon equation

被引:16
作者
Dutykh, Denys [1 ,2 ]
Caputo, Jean-Guy [3 ]
机构
[1] Univ Savoie Mt Blanc, LAMA, CNRS, UMR 5127, Campus Sci, F-73376 Le Bourget Du Lac, France
[2] Univ Savoie Mt Blanc, Univ Grenoble Alpes, CNRS, LAMA, F-73000 Chambery, France
[3] INSA Rouen, Lab Math, BP 8,Ave Univ, F-76801 St Etienne Du Rouvray, France
关键词
Partial differential equations on networks; HAMILTONIAN partial differential equations; Graph theory; Sine-GORDON equation; LOGIC DESIGN; ENERGY;
D O I
10.1016/j.apnum.2018.03.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a scalar HAMILTONIAN nonlinear wave equation formulated on networks; this is a non standard problem because these domains are not locally homeomorphic to any subset of the EUCLIDEAN space. More precisely, we assume each edge to be a 1D uniform line with end points identified with graph vertices. The interface conditions at these vertices are introduced and justified using conservation laws and an homothetic argument. We present a detailed methodology based on a symplectic finite difference scheme together with a special treatment at the junctions to solve the problem and apply it to the sine-GORDON equation. Numerical results on a simple graph containing four loops show the performance of the scheme for kinks and breathers initial conditions. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 71
页数:18
相关论文
共 50 条
[31]   Application of Exp-function Method to Wave Solutions of the Sine-Gordon and Ostrovsky Equations [J].
RATALARPOSHTI ;
SEGHASEMI ;
YRAHMANI ;
DDGANJI .
Acta Mathematicae Applicatae Sinica, 2016, 32 (03) :571-578
[32]   Stochastic Process Associated with Traveling Wave Solutions of the Sine-Gordon Equation [J].
Yajima, Tetsu ;
Ujino, Hideaki .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (12)
[33]   Application of Exp-function method to wave solutions of the Sine-Gordon and Ostrovsky equations [J].
Talarposhti, R. A. ;
Ghasemi, S. E. ;
Rahmani, Y. ;
Ganji, D. D. .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (03) :571-578
[34]   Application of Exp-function method to wave solutions of the Sine-Gordon and Ostrovsky equations [J].
R. A. Talarposhti ;
S. E. Ghasemi ;
Y. Rahmani ;
D. D. Ganji .
Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 :571-578
[35]   KINK AND ANTIKINK SOLITONS ON SINE-GORDON EQUATION [J].
Segovia Chaves, Francis Armando .
REDES DE INGENIERIA-ROMPIENDO LAS BARRERAS DEL CONOCIMIENTO, 2012, 3 (01) :6-11
[36]   Solutions of the sine-Gordon equation with a variable amplitude [J].
E. L. Aero ;
A. N. Bulygin ;
Yu. V. Pavlov .
Theoretical and Mathematical Physics, 2015, 184 :961-972
[37]   Discrete singular convolution for the sine-Gordon equation [J].
Wei, GW .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 137 (3-4) :247-259
[38]   Numerical inverse scattering for the sine-Gordon equation [J].
Deconinck, Bernard ;
Trogdon, Thomas ;
Yang, Xin .
PHYSICA D-NONLINEAR PHENOMENA, 2019, 399 :159-172
[39]   Perturbed soliton solutions of the sine-Gordon equation [J].
S. P. Popov .
Computational Mathematics and Mathematical Physics, 2009, 49 :2085-2091
[40]   SOLUTIONS OF THE SINE-GORDON EQUATION WITH A VARIABLE AMPLITUDE [J].
Aero, E. L. ;
Bulygin, A. N. ;
Pavlov, Yu. V. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 184 (01) :961-972