On quantum hybrid fractional conformable differential and integral operators in a complex domain

被引:30
作者
Ibrahim, Rabha W. [1 ,2 ]
Baleanu, Dumitru [3 ,4 ,5 ]
机构
[1] Ton Duc Thang Univ, Informetr Res Grp, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[4] Inst Space Sci, Bucharest 76900, Romania
[5] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
关键词
Conformable calculus; Differential operator; Univalent function; Analytic function; Subordination and superordination; Unit disk; Fractional calculus; Quantum calculus; 30C55; 30C45; STARLIKE;
D O I
10.1007/s13398-020-00982-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Newly, the hybrid fractional differential operator (HFDO) is presented and studied in Baleanu et al. (Mathematics 8.3:360, 2020). This work deals with the extension of HFDO to the complex domain and its generalization by using the quantum calculus. The outcome of the above conclusion is a q-HFDO, which will employ to introduce some classes of normalized analytic functions containing the well-known starlike and convex classes. Moreover, we utilize the quantum calculus to formulate the q-integral operator corresponding to q-HFDO. As a result, the upper solution is exemplified by utilizing the notion of subordination inequality.
引用
收藏
页数:13
相关论文
共 31 条
  • [1] Anderson D. R., 2015, ADV DYN SYST APPL, V10, P109, DOI DOI 10.13140/RG.2.1.1744.9444
  • [2] [Anonymous], 1989, UNIVALENT FUNCTIONS
  • [3] Aouf MK, 2019, RACSAM REV R ACAD A, V113, P1279, DOI 10.1007/s13398-018-0545-5
  • [4] Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions
    Arif, Muhammad
    Srivastava, H. M.
    Umar, Sadaf
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1211 - 1221
  • [5] On a Fractional Operator Combining Proportional and Classical Differintegrals
    Baleanu, Dumitru
    Fernandez, Arran
    Akgul, Ali
    [J]. MATHEMATICS, 2020, 8 (03)
  • [6] Duren Peter L., 1983, GRUNDLEHREN MATH WIS, V259
  • [7] On subclasses of analytic functions based on a quantum symmetric conformable differential operator with application
    Ibrahim, Rabha W.
    Elobaid, Rafida M.
    Obaiys, Suzan J.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [8] A Class of Quantum Briot-Bouquet Differential Equations with Complex Coefficients
    Ibrahim, Rabha W.
    Elobaid, Rafida M.
    Obaiys, Suzan J.
    [J]. MATHEMATICS, 2020, 8 (05)
  • [9] Conformable differential operator generalizes the Briot-Bouquet differential equation in a complex domain
    Ibrahim, Rabha W.
    Jahangiri, Jay M.
    [J]. AIMS MATHEMATICS, 2019, 4 (06): : 1582 - 1595
  • [10] On a class of analytic functions associated to a complex domain concerning q-differential-difference operator
    Ibrahim, Rabha W.
    Darus, Maslina
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)