Parameters influencing the selectivity to propene in the MTO conversion on 10-ring zeolites: directly synthesized zeolites ZSM-5, ZSM-11, and ZSM-22

被引:67
作者
Dyballa, Michael [1 ]
Becker, Peter [1 ]
Trefz, Daniel [1 ]
Klemm, Elias [1 ]
Fischer, Achim [2 ]
Jakob, Harald [2 ]
Hunger, Michael [1 ]
机构
[1] Univ Stuttgart, Inst Chem Technol, D-70550 Stuttgart, Germany
[2] Evon Ind AG, Hanau, Germany
关键词
Methanol-to-olefin conversion; Propene; Dual-cycle concept; 10-Ring zeolites; Bronsted acid site density; TO-OLEFIN CONVERSION; METHANOL CONVERSION; REACTION-MECHANISM; HYDROCARBON FORMATION; METHOXY GROUPS; LIGHT OLEFINS; CO-REACTION; H-ZSM-5; DEACTIVATION; PHOSPHORUS;
D O I
10.1016/j.apcata.2015.11.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zeolites ZSM-5, ZSM-11, and ZSM-22 (n(si)/n(Al) = 20-1000) were applied as methanol-to-olefin conversion (MTO) catalysts and optimized for high propene selectivities at high methanol conversions, high weight hourly space velocities, and for long catalyst lifetimes. On zeolites ZSM-5 and ZSM-11 with optimized Bronsted acid site densities of 0.13 and 0.15 mmol/g, propene selectivities of 51 and 52%, respectively, at a reaction time of 25 h were reached. In contrast, zeolite ZSM-22 with an optimized acid site density of 0.30 mmol/g showed a maximum propene selectivity of 38% only and a significantly shorter lifetime. Under these conditions, no aromatics could be detected by in situ UV-vis spectroscopy and on-line GC. Thus, an optimized acid site density can suppress the aromatic-based reaction mechanisms by hindering intermolecular hydrogen transfer reactions. Therefore, the acid site optimization could be a promising way for tuning the product selectivity of MTO catalysts on significantly different pore systems. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:233 / 243
页数:11
相关论文
共 64 条
[31]  
Jiang Y.J., 2015, STUDIES SURFACE SCI, P1137
[32]   Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts [J].
Jiang, Yijiao ;
Huang, Jun ;
Dai, Weili ;
Hunger, Michael .
SOLID STATE NUCLEAR MAGNETIC RESONANCE, 2011, 39 (3-4) :116-141
[33]   Phosphorous modified ZSM-5: Deactivation and product distribution for MTO [J].
Kaarsholm, Mads ;
Joensen, Finn ;
Nerlov, Jesper ;
Cenni, Roberta ;
Chaouki, Jamal ;
Patience, Gregory S. .
CHEMICAL ENGINEERING SCIENCE, 2007, 62 (18-20) :5527-5532
[34]  
Karge H.G., 1989, ZEOLITES FACTS FIGUR
[35]  
Karge H.G., 2004, MOL SIEVES SCI TECHN, VI, P201
[36]   ULTRAVIOLET-VISIBLE SPECTROSCOPIC INVESTIGATIONS ON THE INTERACTION OF NEOPENTANE WITH ACIDIC ZEOLITES [J].
KIRICSI, I ;
TASI, G ;
FEJES, P ;
FORSTER, H .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1993, 89 (23) :4221-4224
[37]   Conversion of methanol over H-ZSM-22: The reaction mechanism and deactivation [J].
Li, Jinzhe ;
Wei, Yingxu ;
Qi, Yue ;
Tian, Peng ;
Li, Bing ;
He, Yanli ;
Chang, Fuxiang ;
Sun, Xinde ;
Liu, Zhongmin .
CATALYSIS TODAY, 2011, 164 (01) :288-292
[38]   Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst [J].
Liu, Jian ;
Zhang, Chenxi ;
Shen, Zhenhao ;
Hua, Weiming ;
Tang, Yi ;
Shen, Wei ;
Yue, Yinghong ;
Xu, Hualong .
CATALYSIS COMMUNICATIONS, 2009, 10 (11) :1506-1509
[39]   Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5 [J].
Mei, Changsong ;
Wen, Pengyu ;
Liu, Zhicheng ;
Liu, Hongxing ;
Wang, Yangdong ;
Yang, Weimin ;
Xie, Zaiku ;
Hua, Weiming ;
Gao, Zi .
JOURNAL OF CATALYSIS, 2008, 258 (01) :243-249
[40]  
Mohan J., 2002, ORGANIC SPECTROSCOPY