Fourier multipliers of classical modulation spaces

被引:58
作者
Feichtinger, Hans G.
Narimani, Ghassem
机构
[1] Univ Vienna, Fak Math, A-1090 Vienna, Austria
[2] Univ Tabriz, Fac Math, Tabriz, Iran
关键词
modulation spaces; Wiener amalgam spaces; Fourier multipliers; pointwise multipliers;
D O I
10.1016/j.acha.2006.04.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the observation that translation invariant operators on modulation spaces are convolution operators we use techniques concerning pointwise multipliers for generalized Wiener amalgam spaces in order to give a complete characterization of the Fourier multipliers of modulation spaces. We deduce various applications, among them certain convolution relations between modulation spaces, as well as a short proof for a generalization of the main result of a recent paper by Benyi et al., see [A. Benyi, L. Grafakos, K. Grochenig, K.A. Okoudjou, A class of Fourier multipliers for modulation spaces, Appl. Comput. Harmon. Anal. 19 (1) (2005) 131-139]. Finally, we show that any function with ([d/2] + 1)-times bounded derivatives is a Fourier multiplier for all modulation spaces M-p,M-q (R-d) with p is an element of (1, infinity) and q is an element of [1, infinity]. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:349 / 359
页数:11
相关论文
共 25 条
[1]   A class of Fourier multipliers for modulation spaces [J].
Bényi, A ;
Grafakos, L ;
Gröchenig, K ;
Okoudjou, K .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (01) :131-139
[2]   Time-frequency analysis of localization operators [J].
Cordero, E ;
Gröchenig, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 205 (01) :107-131
[3]  
Feichtinger H. G., 2006, Sampling Theory in Signal and Image Processing, V5, P109
[4]  
FEICHTINGER H. G., 2003, Wavelets and their applications, P99
[5]  
Feichtinger Hans G., 1981, Internat. Ser. Numer. Math., V60, P153
[6]   MULTIPLIERS OF BANACH-SPACES OF FUNCTIONS ON GROUPS [J].
FEICHTINGER, HG .
MATHEMATISCHE ZEITSCHRIFT, 1976, 152 (01) :47-58
[7]   BANACH-SPACES OF DISTRIBUTIONS DEFINED BY DECOMPOSITION METHODS .1. [J].
FEICHTINGER, HG ;
GROBNER, P .
MATHEMATISCHE NACHRICHTEN, 1985, 123 :97-120
[8]   GENERALIZED AMALGAMS, WITH APPLICATIONS TO FOURIER-TRANSFORM [J].
FEICHTINGER, HG .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1990, 42 (03) :395-409
[9]   ON A NEW SEGAL ALGEBRA [J].
FEICHTINGER, HG .
MONATSHEFTE FUR MATHEMATIK, 1981, 92 (04) :269-289
[10]  
FEICHTINGER HG, 1980, CR ACAD SCI A MATH, V290, P791