Rank reduction and volume minimization approach to state-space subspace system identification

被引:3
|
作者
Savas, Berkant [1 ]
Lindgren, David
机构
[1] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
[2] Linkoping Univ, Dept Elect Engn, S-58183 Linkoping, Sweden
关键词
reduced rank regression; system identification; general algorithm; determinant minimization criterion; rank reduction; volume minimization;
D O I
10.1016/j.sigpro.2006.01.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we consider the reduced rank regression problem min(rank (L) over bar =n,L3) det (Y-alpha-(L) over barP(beta)-L3U alpha)(Y-alpha-(L) over barP(beta)-L3U alpha)(T) solved by maximum-likelihood-inspired state-space subspace system identification algorithms. We conclude that the determinant criterion is, due to potential rank-deficiencies, not general enough to handle all problem instances. The main part of the paper analyzes the structure of the reduced rank minimization problem and identifies signal properties in terms of geometrical concepts. A more general minimization criterion is considered, rank reduction followed by volume minimization. A numerically sound algorithm for minimizing this criterion is presented and validated on both simulated and experimental data. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:3275 / 3285
页数:11
相关论文
共 50 条
  • [41] Towards a state-space polytopic uncertainty description using subspace model identification techniques
    Van den Boom, TJJ
    Haverkamp, BRJ
    INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (15) : 1570 - 1583
  • [42] Towards a state-space polytopic uncertainty description using subspace model identification techniques
    van den Boom, TJJ
    Haverkamp, BRJ
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 1807 - 1811
  • [43] Recursive subspace identification of linear and non-linear Wiener state-space models
    Lovera, M
    Gustafsson, T
    Verhaegen, M
    AUTOMATICA, 2000, 36 (11) : 1639 - 1650
  • [44] A Sparse Bayesian Approach to the Identification of Nonlinear State-Space Systems
    Pan, Wei
    Yuan, Ye
    Goncalves, Jorge
    Stan, Guy-Bart
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (01) : 182 - 187
  • [45] A state-space approach to time-varying reduced-rank regression
    Brune, Barbara
    Scherrer, Wolfgang
    Bura, Efstathia
    ECONOMETRIC REVIEWS, 2022, 41 (08) : 895 - 917
  • [46] Parameterization and identification of multivariable state-space systems: A canonical approach
    Mercere, Guillaume
    Bako, Laurent
    AUTOMATICA, 2011, 47 (08) : 1547 - 1555
  • [47] STATE-SPACE APPROACH TO AN ADAPTIVE SPEECH ANALYSIS SYSTEM
    MORIKAWA, H
    FUJISAKI, H
    HASHIMOTO, K
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1977, 60 (06): : 31 - 39
  • [48] A NEW ORTHOGONAL SERIES APPROACH TO STATE-SPACE ANALYSIS AND IDENTIFICATION
    PARASKEVOPOULOS, PN
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1989, 20 (06) : 957 - 970
  • [49] Parameter identification for nonlinear models from a state-space approach
    Matz, Jules
    Birouche, Abderazik
    Mourllion, Benjamin
    Bouziani, Fethi
    Basset, Michel
    IFAC PAPERSONLINE, 2020, 53 (02): : 13910 - 13915
  • [50] A stochastic subspace system identification algorithm for state-space systems in the general 2-D Roesser model form
    Ramos, Jose A.
    Mercere, Guillaume
    INTERNATIONAL JOURNAL OF CONTROL, 2018, 91 (12) : 2743 - 2771