Rank reduction and volume minimization approach to state-space subspace system identification

被引:3
|
作者
Savas, Berkant [1 ]
Lindgren, David
机构
[1] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
[2] Linkoping Univ, Dept Elect Engn, S-58183 Linkoping, Sweden
关键词
reduced rank regression; system identification; general algorithm; determinant minimization criterion; rank reduction; volume minimization;
D O I
10.1016/j.sigpro.2006.01.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we consider the reduced rank regression problem min(rank (L) over bar =n,L3) det (Y-alpha-(L) over barP(beta)-L3U alpha)(Y-alpha-(L) over barP(beta)-L3U alpha)(T) solved by maximum-likelihood-inspired state-space subspace system identification algorithms. We conclude that the determinant criterion is, due to potential rank-deficiencies, not general enough to handle all problem instances. The main part of the paper analyzes the structure of the reduced rank minimization problem and identifies signal properties in terms of geometrical concepts. A more general minimization criterion is considered, rank reduction followed by volume minimization. A numerically sound algorithm for minimizing this criterion is presented and validated on both simulated and experimental data. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:3275 / 3285
页数:11
相关论文
共 50 条
  • [41] State-space Identification in Frequency Domain from Missing Measurements
    Tang, Wei
    Zheng, Xiaoke
    Wu, Jian
    Wang, Libo
    IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 6933 - 6939
  • [42] Tensor network subspace identification of polynomial state space models
    Batselier, Kim
    Ko, Ching-Yun
    Wong, Ngai
    AUTOMATICA, 2018, 95 : 187 - 196
  • [43] Automated Seizure Detection Based on State-Space Model Identification
    Wang, Zhuo
    Sperling, Michael R.
    Wyeth, Dale
    Guez, Allon
    SENSORS, 2024, 24 (06)
  • [44] Nonparametric Analysis and Nonlinear State-Space Identification: A Benchmark Example
    Van Mulders, A.
    Schoukens, J.
    Vanbeylen, L.
    NONLINEAR DYNAMICS, VOL 2, 2014, : 203 - 214
  • [45] Robust Optimization Method for the Identification of Nonlinear State-Space Models
    Van Mulders, Anne
    Vanbeylen, Laurent
    Schoukens, Johan
    2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 1423 - 1428
  • [46] Modal parameter identification based on ARMAV and state-space approaches
    Lardies, Joseph
    ARCHIVE OF APPLIED MECHANICS, 2010, 80 (04) : 335 - 352
  • [47] A Nonlinear System Identification Method Based on Fuzzy dynamical Model and State-Space Neural Network
    Huang, Xiaobin
    Qi, Hongjing
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 4738 - +
  • [48] An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification
    Gonzalez, Rodrigo A.
    Cedeno, Angel L.
    Coronel, Maria
    Aguero, Juan C.
    Rojas, Cristian R.
    IFAC PAPERSONLINE, 2023, 56 (02): : 4204 - 4209
  • [49] Identification of Nonlinear State-Space Systems From Heterogeneous Datasets
    Pan, Wei
    Yuan, Ye
    Ljung, Lennart
    Goncalves, Jorge
    Stan, Guy-Bart
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2018, 5 (02): : 737 - 747
  • [50] Identification of Nonlinear State-Space Models Using Joint State Particle Smoothing
    Geng Li-Hui
    Brett, Ninness
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 2166 - 2170