Rank reduction and volume minimization approach to state-space subspace system identification

被引:3
|
作者
Savas, Berkant [1 ]
Lindgren, David
机构
[1] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
[2] Linkoping Univ, Dept Elect Engn, S-58183 Linkoping, Sweden
关键词
reduced rank regression; system identification; general algorithm; determinant minimization criterion; rank reduction; volume minimization;
D O I
10.1016/j.sigpro.2006.01.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we consider the reduced rank regression problem min(rank (L) over bar =n,L3) det (Y-alpha-(L) over barP(beta)-L3U alpha)(Y-alpha-(L) over barP(beta)-L3U alpha)(T) solved by maximum-likelihood-inspired state-space subspace system identification algorithms. We conclude that the determinant criterion is, due to potential rank-deficiencies, not general enough to handle all problem instances. The main part of the paper analyzes the structure of the reduced rank minimization problem and identifies signal properties in terms of geometrical concepts. A more general minimization criterion is considered, rank reduction followed by volume minimization. A numerically sound algorithm for minimizing this criterion is presented and validated on both simulated and experimental data. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:3275 / 3285
页数:11
相关论文
共 50 条
  • [21] Subspace Identification of Countercurrent Rare Earth Extraction Process Based on Nonlinear State-space Models
    Zhong, Lusheng
    Fan, Xiaoping
    Yang, Hui
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 5757 - 5761
  • [22] Identification of Time-Delay Systems: a State-Space Realization Approach
    Lima, Rafael B. C.
    Barros, Pericles R.
    IFAC PAPERSONLINE, 2015, 48 (08): : 254 - 259
  • [23] State-Space Recurrent Fuzzy Neural Networks for Nonlinear System Identification
    Wen Yu
    Neural Processing Letters, 2005, 22 : 391 - 404
  • [24] State-space recurrent fuzzy neural networks for nonlinear system identification
    Yu, W
    NEURAL PROCESSING LETTERS, 2005, 22 (03) : 391 - 404
  • [25] Subspace Identification for Predictive State Representation by Nuclear Norm Minimization
    Glaude, Hadrien
    Pietquin, Olivier
    Enderli, Cyrille
    2014 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING (ADPRL), 2014, : 9 - 16
  • [26] Identification of MIMO switched state-space models
    Bako, Laurent
    Van Luong Le
    Lauer, Fabien
    Bloch, Gerard
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 71 - 76
  • [27] System Identification of Bilinear State-space Models by Modified Gradient Search Method
    Zhong Lusheng
    Fan Xiaoping
    Yang Hui
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 1282 - 1286
  • [28] Physically motivated rank constraint on direct throughput of state-space models
    Gibanica, Mladen
    Abrahamsson, Thomas J. S.
    McKelvey, Tomas
    IFAC PAPERSONLINE, 2018, 51 (15): : 329 - 334
  • [29] Identification of two dimensional complex sinusoids in white noise: a state-space frequency approach
    Soverini, Umberto
    Soderstrom, Torsten
    IFAC PAPERSONLINE, 2018, 51 (15): : 996 - 1001
  • [30] A Globally Optimized State-space Model Identification Method
    Liu, Lixian
    Han, Bingxin
    Li, Jinbo
    Li, Xinling
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 4741 - +