Rank reduction and volume minimization approach to state-space subspace system identification

被引:3
|
作者
Savas, Berkant [1 ]
Lindgren, David
机构
[1] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
[2] Linkoping Univ, Dept Elect Engn, S-58183 Linkoping, Sweden
关键词
reduced rank regression; system identification; general algorithm; determinant minimization criterion; rank reduction; volume minimization;
D O I
10.1016/j.sigpro.2006.01.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we consider the reduced rank regression problem min(rank (L) over bar =n,L3) det (Y-alpha-(L) over barP(beta)-L3U alpha)(Y-alpha-(L) over barP(beta)-L3U alpha)(T) solved by maximum-likelihood-inspired state-space subspace system identification algorithms. We conclude that the determinant criterion is, due to potential rank-deficiencies, not general enough to handle all problem instances. The main part of the paper analyzes the structure of the reduced rank minimization problem and identifies signal properties in terms of geometrical concepts. A more general minimization criterion is considered, rank reduction followed by volume minimization. A numerically sound algorithm for minimizing this criterion is presented and validated on both simulated and experimental data. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:3275 / 3285
页数:11
相关论文
共 50 条
  • [1] A linear regression approach to state-space subspace system identification
    Jansson, M
    Wahlberg, B
    SIGNAL PROCESSING, 1996, 52 (02) : 103 - 129
  • [2] Subspace-based state-space system identification
    Viberg, M
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2002, 21 (01) : 23 - 37
  • [3] Subspace-based state-space system identification
    Mats Viberg
    Circuits, Systems and Signal Processing, 2002, 21 : 23 - 37
  • [4] Initialization Approach for Nonlinear State-Space Identification via the Subspace Encoder Approach
    Ramkannan, Rishi
    Beintema, Gerben I.
    Toth, Roland
    Schoukens, Maarten
    IFAC PAPERSONLINE, 2023, 56 (02): : 5146 - 5151
  • [5] State-space system identification with physically motivated residual states and throughput rank constraint
    Gibanica, Mladen
    Abrahamsson, Thomas J. S.
    McKelvey, Tomas
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 142 (142)
  • [6] Nuclear Norm Subspace Identification Of Continuous Time State-Space Models
    Varanasi, Santhosh Kumar
    Jampana, Phanindra
    IFAC PAPERSONLINE, 2018, 51 (01): : 530 - 535
  • [7] Choice of state-space basis in combined deterministic stochastic subspace identification
    VanOverschee, P
    DeMoor, B
    AUTOMATICA, 1995, 31 (12) : 1877 - 1883
  • [8] Constrained Subspace Method for the Identification of Structured State-Space Models (COSMOS)
    Yu, Chengpu
    Ljung, Lennart
    Wills, Adrian
    Verhaegen, Michel
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (10) : 4201 - 4214
  • [9] A nonlinear state-space approach to hysteresis identification
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 84 : 171 - 184
  • [10] System identification of nonlinear state-space models
    Schon, Thomas B.
    Wills, Adrian
    Ninness, Brett
    AUTOMATICA, 2011, 47 (01) : 39 - 49