The ATM-dependent DNA damage signaling pathway

被引:135
作者
Kitagawa, R. [1 ]
Kastan, M. B. [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Mol Pharmacol, Memphis, TN 38105 USA
来源
MOLECULAR APPROACHES TO CONTROLLING CANCER | 2005年 / 70卷
关键词
D O I
10.1101/sqb.2005.70.002
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Many of the insights that we have gained into the mechanisms involved in cellular DNA damage response pathways have come from studies of human cancer susceptibility syndromes that are altered in DNA damage responses. ATM, the gene mutated in the disorder, ataxia-telangiectasia, is a protein kinase that is a central mediator of responses to DNA double-strand breaks in cells. Recent studies have elucidated the mechanism by which DNA damage activates the ATM kinase and initiates these critical cellular signaling pathways. The SMC1 protein appears to be a particularly important target of the ATM kinase, playing critical roles in controlling DNA replication forks and DNA repair after the damage. A major role for the NBS1 and BRCA1 proteins appears to be in the recruitment of an activated ATM kinase molecule to the sites of DNA breaks so that ATM can phosphorylate SMC1. Generation of mice and cells that are unable to phosphorylate SMC1 demonstrated the importance of SMC1 phosphorylation in the DNA-damage-induced S-phase checkpoint, in determining rates of repair of chromosomal breaks, and in determining cell survival after DNA damage. Focusing on ATM and SMC1, the molecular controls of these pathways is discussed.
引用
收藏
页码:99 / 109
页数:11
相关论文
共 48 条
  • [1] Ahn JY, 2000, CANCER RES, V60, P5934
  • [2] Structural maintenance of chromosomes protein C-terminal domains bind preferentially to DNA with secondary structure
    Akhmedov, AT
    Frei, C
    Tsai-Pflugfelder, M
    Kemper, B
    Gasser, SM
    Jessberger, R
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (37) : 24088 - 24094
  • [3] Condensin and cohesin display different arm conformations with characteristic hinge angles
    Anderson, DE
    Losada, A
    Erickson, HP
    Hirano, T
    [J]. JOURNAL OF CELL BIOLOGY, 2002, 156 (03) : 419 - 424
  • [4] ATP hydrolysis is required for cohesin's association with chromosomes
    Arumugam, P
    Gruber, S
    Tanaka, K
    Haering, CH
    Mechtler, K
    Nasmyth, K
    [J]. CURRENT BIOLOGY, 2003, 13 (22) : 1941 - 1953
  • [5] DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation
    Bakkenist, CJ
    Kastan, MB
    [J]. NATURE, 2003, 421 (6922) : 499 - 506
  • [6] Enhanced phosphorylation of p53 by ATN in response to DNA damage
    Banin, S
    Moyal, L
    Shieh, SY
    Taya, Y
    Anderson, CW
    Chessa, L
    Smorodinsky, NI
    Prives, C
    Reiss, Y
    Shiloh, Y
    Ziv, Y
    [J]. SCIENCE, 1998, 281 (5383) : 1674 - 1677
  • [7] ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses
    Bao, SD
    Tibbetts, RS
    Brumbaugh, KM
    Fang, YN
    Richardson, DA
    Ali, A
    Chen, SM
    Abraham, RT
    Wang, XF
    [J]. NATURE, 2001, 411 (6840) : 969 - 974
  • [8] CLONING AND CHARACTERIZATION OF RAD21 AN ESSENTIAL GENE OF SCHIZOSACCHAROMYCES-POMBE INVOLVED IN DNA DOUBLE-STRAND-BREAK REPAIR
    BIRKENBIHL, RP
    SUBRAMANI, S
    [J]. NUCLEIC ACIDS RESEARCH, 1992, 20 (24) : 6605 - 6611
  • [9] FAT: a novel domain in PIK-related kinases
    Bosotti, R
    Isacchi, A
    Sonnhammer, ELL
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (05) : 225 - 227
  • [10] Activation of the ATM kinase by ionizing radiation and phosphorylation of p53
    Canman, CE
    Lim, DS
    Cimprich, KA
    Taya, Y
    Tamai, K
    Sakaguchi, K
    Appella, E
    Kastan, MB
    Siliciano, JD
    [J]. SCIENCE, 1998, 281 (5383) : 1677 - 1679