Evolution of large-scale flow from turbulence in a two-dimensional superfluid

被引:128
作者
Johnstone, Shaun P. [1 ]
Groszek, Andrew J. [1 ,5 ]
Starkey, Philip T. [1 ]
Billington, Christopher J. [1 ,2 ,3 ]
Simula, Tapio P. [1 ,6 ]
Helmerson, Kristian [1 ,4 ]
机构
[1] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia
[2] NIST, Joint Quantum Inst, Gaithersburg, MD 20899 USA
[3] Univ Maryland, Gaithersburg, MD 20899 USA
[4] Monash Univ, ARC Ctr Excellence Future Low Energy Elect Techno, Clayton, Vic 3800, Australia
[5] Newcastle Univ, Joint Quantum Ctr JQC Durham Newcastle, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[6] Swinburne Univ Technol, Ctr Quantum & Opt Sci, Melbourne, Vic 3122, Australia
基金
澳大利亚研究理事会;
关键词
CLUSTERS;
D O I
10.1126/science.aat5793
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nonequilibrium interacting systems can evolve to exhibit large-scale structure and order. In two-dimensional turbulent flow, the seemingly random swirling motion of a fluid can evolve toward persistent large-scale vortices. To explain such behavior, Lars Onsager proposed a statistical hydrodynamic model based on quantized vortices. Here, we report on the experimental confirmation of Onsager's model. We dragged a grid barrier through an oblate superfluid Bose-Einstein condensate to generate nonequilibrium distributions of vortices. We observed signatures of an inverse energy cascade driven by the evaporative heating of vortices, leading to steady-state configurations characterized by negative absolute temperatures. Our results open a pathway for quantitative studies of emergent structures in interacting quantum systems driven far from equilibrium.
引用
收藏
页码:1267 / +
页数:25
相关论文
共 42 条
  • [21] Navon N., 2018, ARXIV180707564
  • [22] Emergence of a turbulent cascade in a quantum gas
    Navon, Nir
    Gaunt, Alexander L.
    Smith, Robert P.
    Hadzibabic, Zoran
    [J]. NATURE, 2016, 539 (7627) : 72 - +
  • [23] Characteristics of Two-Dimensional Quantum Turbulence in a Compressible Superfluid
    Neely, T. W.
    Bradley, A. S.
    Samson, E. C.
    Rooney, S. J.
    Wright, E. M.
    Law, K. J. H.
    Carretero-Gonzalez, R.
    Kevrekidis, P. G.
    Davis, M. J.
    Anderson, B. P.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (23)
  • [24] Observation of Vortex Dipoles in an Oblate Bose-Einstein Condensate
    Neely, T. W.
    Samson, E. C.
    Bradley, A. S.
    Davis, M. J.
    Anderson, B. P.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (16)
  • [25] Nonthermal fixed points, vortex statistics, and superfluid turbulence in an ultracold Bose gas
    Nowak, Boris
    Schole, Jan
    Sexty, Denes
    Gasenzer, Thomas
    [J]. PHYSICAL REVIEW A, 2012, 85 (04)
  • [26] Detection of small atom numbers through image processing
    Ockeloen, C. F.
    Tauschinsky, A. F.
    Spreeuw, R. J. C.
    Whitlock, S.
    [J]. PHYSICAL REVIEW A, 2010, 82 (06):
  • [27] Onsager L., 1949, Il Nuovo Cim, V6, P279, DOI DOI 10.1007/BF02780991
  • [28] Vortex Gyroscope Imaging of Planar Superfluids
    Powis, A. T.
    Sammut, S. J.
    Simula, T. P.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (16)
  • [29] A NUCLEAR SPIN SYSTEM AT NEGATIVE TEMPERATURE
    PURCELL, EM
    POUND, RV
    [J]. PHYSICAL REVIEW, 1951, 81 (02): : 279 - 280
  • [30] Measuring the disorder of vortex lattices in a Bose-Einstein condensate
    Rakonjac, A.
    Marchant, A. L.
    Billam, T. P.
    Helm, J. L.
    Yu, M. M. H.
    Gardiner, S. A.
    Cornish, S. L.
    [J]. PHYSICAL REVIEW A, 2016, 93 (01)