An algebraic approach to shape invariance with reflections

被引:7
|
作者
Aleixo, A. N. F. [1 ]
Balantekin, A. B. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, BR-21941 Rio De Janeiro, RJ, Brazil
[2] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
supersymmetric quantum mechanics; shape invariance; reflection operator; ONE-DIMENSION; SUPERSYMMETRY; CALOGERO; POTENTIALS; SPECTRUM; SYSTEMS; STATE; MODEL;
D O I
10.1088/1751-8113/47/13/135304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a realization of supersymmetric shape-invariant quantum systems where generalized ladder operators are constructed through the association of the supersymmetric partner operators (A) over cap (x, a(1)), (A) over cap (dagger)(x, a(1)), the parameter potential translation operator (T) over cap (a1) and the reflection operator (R) over cap. The basic algebraic relations as well as the system eigenstates and energy eigenvalues are obtained. As an illustration, we apply the generalized formalism for two important shape-invariant potential systems: the Scarf hyperbolic and the Morse potentials.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Algebraic Properties of the Shape Invariance Condition
    Su, W. -C.
    CHINESE JOURNAL OF PHYSICS, 2013, 51 (05) : 918 - 935
  • [2] Shape invariance in prepotential approach to exactly solvable models
    Ho, Choon-Lin
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (04)
  • [3] Supersymmetry and shape invariance of exceptional orthogonal polynomials
    Yadav, Satish
    Khare, Avinash
    Mandal, Bhabani Prasad
    ANNALS OF PHYSICS, 2022, 444
  • [4] Quantum Hamilton-Jacobi quantization and shape invariance
    Dasgupta, Rathi
    Gangopadhyaya, Asim
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (29)
  • [5] New two-dimensional quantum models with shape invariance
    Cannata, F.
    Ioffe, M. V.
    Nishnianidze, D. N.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (02)
  • [6] An Algebraic Framework for Quadratic Invariance
    Lessard, Laurent
    Lall, Sanjay
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 2698 - 2703
  • [7] SUPERSYMMETRY APPROACH AND SHAPE INVARIANCE FOR PSEUDO-HARMONIC POTENTIAL
    Amani, Ali R.
    Ghorbanpour, H.
    ACTA PHYSICA POLONICA B, 2012, 43 (09): : 1795 - 1803
  • [8] Shape invariance and SUSY separation of variables
    Ioffe, M. V.
    Kolevatova, E. V.
    Vereshagin, V.
    19TH INTERNATIONAL SEMINAR ON HIGH ENERGY PHYSICS (QUARKS-2016), 2016, 125
  • [9] New implicitly solvable potential produced by second order shape invariance
    Cannata, F.
    Ioffe, M. V.
    Kolevatova, E. V.
    Nishnianidze, D. N.
    ANNALS OF PHYSICS, 2015, 356 : 438 - 451
  • [10] A Method of Constructing Superpotentials by Combining Two Functions Based on Shape Invariance
    Qiu, Wenxin
    Yin, Yin
    Cheng, Wei
    Liu, Yao
    Luo, Guang
    ADVANCES IN MATHEMATICAL PHYSICS, 2024, 2024