Transport properties of disordered two-dimensional complex plasma crystal

被引:11
作者
Kostadinova, E. G. [1 ,2 ]
Guyton, F. [3 ]
Cameron, A. [4 ]
Busse, K. [1 ,2 ]
Liaw, C. [5 ]
Matthews, L. S. [1 ,2 ]
Hyde, T. W. [1 ,2 ]
机构
[1] Baylor Univ, Ctr Astrophys Space Phys & Engn Res, One Bear Pl 97310, Waco, TX 76706 USA
[2] Baylor Univ, Dept Phys, One Bear Pl 97310, Waco, TX 76706 USA
[3] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY USA
[4] Brigham Young Univ, Dept Phys, Provo, UT 84602 USA
[5] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Anderson localization; complex plasma; long-distance interaction; spectral approach; SATURN F-RING;
D O I
10.1002/ctpp.201700111
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this study, we numerically investigate the transport properties of a two-dimensional (2D) complex plasma crystal using diffusion of coplanar dust lattice waves. In the limit where the Hamiltonian interactions can be decoupled from the non-Hamiltonian effects, we identify two distinct types of wave transport: Anderson-type delocalization and long-distance excitation. We use a recently developed spectral approach to evaluate the contribution of the Anderson problem and compare it to the results of the simulation. The benefit of our approach to transport problems is twofold. First, we employ a highly tuneable macroscopic hexagonal crystal, which exhibits many-body interactions and allows for the investigation of transport properties at the kinetic level. Second, the analysis of the transport problem in 2D is provided using an innovative spectral approach, which avoids the use of scaling and boundary conditions. The comparison between the analytically predicted and numerically observed wave dynamics allows for the study of important characteristics of this open system. In our simulations, we observe long-distance lattice excitation, which occurs around lattice defects even when the initial perturbation does not spread from the centre to the exterior of the crystal. In the decoupled Hamiltonian regime, this many-body effect can be attributed to the dust lattice interaction with the plasma environment.
引用
收藏
页码:209 / 216
页数:8
相关论文
共 50 条
[41]   Magnetoresistance due to Diamagnetic Response in Two-Dimensional System [J].
Ando, Tsuneya .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2020, 89 (12)
[42]   Periodic electron oscillation in coupled two-dimensional lattices [J].
Lu, Yan-Yan ;
Wang, Chao ;
Jiang, Jin-Yi ;
Liu, Jie ;
Zhong, Jian-Xin .
CHINESE PHYSICS B, 2023, 32 (07)
[43]   Anderson localization in a two-dimensional random gap model [J].
Hill, A. ;
Ziegler, K. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 56 :172-176
[44]   Observing the two-dimensional Bose glass in an optical quasicrystal [J].
Yu, Jr-Chiun ;
Bhave, Shaurya ;
Reeve, Lee ;
Song, Bo ;
Schneider, Ulrich .
NATURE, 2024, 633 (8029) :338-343
[45]   Localization and spectral structure in two-dimensional quasicrystal potentials [J].
Zhu, Zhaoxuan ;
Yu, Shengjie ;
Johnstone, Dean ;
Sanchez-Palencia, Laurent .
PHYSICAL REVIEW A, 2024, 109 (01)
[46]   Equilibrium phases of two-dimensional bosons in quasiperiodic lattices [J].
Zhang, C. ;
Safavi-Naini, A. ;
Capogrosso-Sansone, B. .
PHYSICAL REVIEW A, 2015, 91 (03)
[47]   Wave transport in one-dimensional disordered systems with finite-size scatterers [J].
Diaz, Marlos ;
Mello, Pier A. ;
Yepez, Miztli ;
Tomsovic, Steven .
PHYSICAL REVIEW B, 2015, 91 (18)
[48]   Dynamics of one-dimensional and two-dimensional helium adsorbed on carbon nanotubes [J].
Diallo, S. O. ;
Fak, B. ;
Adams, M. A. ;
Vilches, O. E. ;
Johnson, M. R. ;
Schober, H. ;
Glyde, H. R. .
EPL, 2009, 88 (05)
[49]   Scaling theory of heat transport in quasi-one-dimensional disordered harmonic chains [J].
Bodyfelt, Joshua D. ;
Zheng, Mei C. ;
Fleischmann, Ragnar ;
Kottos, Tsampikos .
PHYSICAL REVIEW E, 2013, 87 (02)
[50]   Thermodynamic Phase Diagram of Two-Dimensional Bosons in a Quasicrystal Potential [J].
Zhu, Zhaoxuan ;
Yao, Hepeng ;
Sanchez-Palencia, Laurent .
PHYSICAL REVIEW LETTERS, 2023, 130 (22)