On Fuzzy Clustering for Incomplete Spherical Data and for Incomplete Multivariate Categorical Data

被引:0
作者
Kanzawa, Yuchi [1 ]
机构
[1] Shibaura Inst Technol, Tokyo, Japan
来源
2018 JOINT 10TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 19TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS) | 2018年
关键词
Incomplete Spherical Data; Incomplete Categorical Multivariate Data; Fuzzy Clustering; Optimal Completion Strategy;
D O I
10.1109/SCIS-ISIS.2018.00107
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, six fuzzy clustering algorithms for incomplete data are proposed that use the optimal completion strategy, three of which are for incomplete spherical data and these of which are for incomplete categorical multivariate data. In numerical experiments using a real dataset, each of the proposed methods outperformed its counterpart method based on the whole data strategy (WDS) in terms of accuracy.
引用
收藏
页码:638 / 643
页数:6
相关论文
共 18 条
[1]  
Bezdek J. C., 1981, Pattern recognition with fuzzy objective function algorithms
[2]   Concept decompositions for large sparse text data using clustering [J].
Dhillon, IS ;
Modha, DS .
MACHINE LEARNING, 2001, 42 (1-2) :143-175
[3]  
HATHAWAY RJ, 2001, CYBERNETICS IEEE T, V31, P735
[4]  
Honda K, 2014, IEEE INT FUZZY SYST, P2505, DOI 10.1109/FUZZ-IEEE.2014.6891747
[5]   COMPARING PARTITIONS [J].
HUBERT, L ;
ARABIE, P .
JOURNAL OF CLASSIFICATION, 1985, 2 (2-3) :193-218
[6]  
Kanzawa Yuchi, 2015, Modeling Decisions for Artificial Intelligence. 12th International Conference, MDAI 2015. Proceedings: 9321, P115, DOI 10.1007/978-3-319-23240-9_10
[7]  
Kanzawa Y., 2015, P FUZZ IEEE2015
[9]  
Kondo T., 2004, JACIII, V22
[10]  
Krishnapuram R., 1993, IEEE Transactions on Fuzzy Systems, V1, P98, DOI 10.1109/91.227387