Gram-scale production of graphene based on solvothermal synthesis and sonication

被引:272
作者
Choucair, Mohammad [1 ]
Thordarson, Pall [1 ]
Stride, John A. [1 ,2 ]
机构
[1] Univ New S Wales, Sch Chem, Sydney, NSW 2052, Australia
[2] Australian Nucl Sci & Technol Org, Bragg Inst, Menai, NSW 2234, Australia
关键词
GRAPHITE; NANOSHEETS; SHEETS; SURFACE; FILMS; OXIDE;
D O I
10.1038/NNANO.2008.365
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Carbon nanostructures have emerged as likely candidates for a wide range of applications, driving research into novel synthetic techniques to produce nanotubes, graphene and other carbon-based materials. Single sheets of pristine graphene have been isolated from bulk graphite in small amounts by micromechanical cleavage(1), and larger amounts of chemically modified graphene sheets have been produced by a number of approaches(2-7). Both of these techniques make use of highly oriented pyrolitic graphite as a starting material and involve labour-intensive preparations. Here, we report the direct chemical synthesis of carbon nanosheets in gram-scale quantities in a bottom-up approach based on the common laboratory reagents ethanol and sodium, which are reacted to give an intermediate solid that is then pyrolized, yielding a fused array of graphene sheets that are dispersed by mild sonication. The ability to produce bulk graphene samples from nongraphitic precursors with a scalable, low-cost approach should take us a step closer to real-world applications of graphene.
引用
收藏
页码:30 / 33
页数:4
相关论文
共 24 条
[11]   Low temperature solvothermal synthesis of crumpled carbon nanosheets [J].
Kuang, Q ;
Xie, SY ;
Jiang, ZY ;
Zhang, XH ;
Xie, ZX ;
Huang, RB ;
Zheng, LS .
CARBON, 2004, 42 (8-9) :1737-1741
[12]   STM INVESTIGATION OF SINGLE LAYER GRAPHITE STRUCTURES PRODUCED ON PT(111) BY HYDROCARBON DECOMPOSITION [J].
LAND, TA ;
MICHELY, T ;
BEHM, RJ ;
HEMMINGER, JC ;
COMSA, G .
SURFACE SCIENCE, 1992, 264 (03) :261-270
[13]  
Landau L., 1937, PHYS Z SOWJETUNION, V7, P19, DOI DOI 10.1038/138840A0
[14]   Processable aqueous dispersions of graphene nanosheets [J].
Li, Dan ;
Mueller, Marc B. ;
Gilje, Scott ;
Kaner, Richard B. ;
Wallace, Gordon G. .
NATURE NANOTECHNOLOGY, 2008, 3 (02) :101-105
[15]   Highly conducting graphene sheets and Langmuir-Blodgett films [J].
Li, Xiaolin ;
Zhang, Guangyu ;
Bai, Xuedong ;
Sun, Xiaoming ;
Wang, Xinran ;
Wang, Enge ;
Dai, Hongjie .
NATURE NANOTECHNOLOGY, 2008, 3 (09) :538-542
[16]   Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J].
Li, Xiaolin ;
Wang, Xinran ;
Zhang, Li ;
Lee, Sangwon ;
Dai, Hongjie .
SCIENCE, 2008, 319 (5867) :1229-1232
[17]   Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition [J].
Malesevic, Alexander ;
Vitchev, Roumen ;
Schouteden, Koen ;
Volodin, Alexander ;
Zhang, Liang ;
Van Tendeloo, Gustaaf ;
Vanhulsel, Annick ;
Van Haesendonck, Chris .
NANOTECHNOLOGY, 2008, 19 (30)
[18]   The structure of suspended graphene sheets [J].
Meyer, Jannik C. ;
Geim, A. K. ;
Katsnelson, M. I. ;
Novoselov, K. S. ;
Booth, T. J. ;
Roth, S. .
NATURE, 2007, 446 (7131) :60-63
[19]   ELECTRONIC STATES OF MONOLAYER GRAPHITE FORMED ON TIC(111) SURFACE [J].
NAGASHIMA, A ;
NUKA, K ;
ITOH, H ;
ICHINOKAWA, T ;
OSHIMA, C ;
OTANI, S .
SURFACE SCIENCE, 1993, 291 (1-2) :93-98
[20]   Electric field effect in atomically thin carbon films [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Zhang, Y ;
Dubonos, SV ;
Grigorieva, IV ;
Firsov, AA .
SCIENCE, 2004, 306 (5696) :666-669