Opportunities and obstacles for deep learning in biology and medicine

被引:1176
作者
Ching, Travers [1 ]
Himmelstein, Daniel S. [2 ]
Beaulieu-Jones, Brett K. [3 ]
Kalinin, Alexandr A. [4 ]
Do, Brian T. [5 ]
Way, Gregory P. [2 ]
Ferrero, Enrico [6 ]
Agapow, Paul-Michael [7 ]
Zietz, Michael
Hoffman, Michael M. [8 ,9 ,10 ]
Xie, Wei [11 ]
Rosen, Gail L. [12 ]
Lengerich, Benjamin J. [13 ]
Israeli, Johnny [14 ]
Lanchantin, Jack [17 ]
Woloszynek, Stephen
Carpenter, Anne E. [18 ,19 ]
Shrikumar, Avanti [15 ]
Xu, Jinbo [20 ]
Cofer, Evan M. [21 ,22 ]
Lavender, Christopher A. [23 ]
Turaga, Srinivas C. [24 ]
Alexandari, Amr M.
Lu, Zhiyong [25 ,26 ]
Harris, David J. [27 ]
DeCaprio, Dave [28 ]
Qi, Yanjun
Kundaje, Anshul [15 ,16 ]
Peng, Yifan [25 ,26 ]
Wiley, Laura K. [29 ]
Segler, Marwin H. S. [30 ]
Boca, Simina M. [31 ]
Swamidass, S. Joshua [32 ]
Huang, Austin [33 ]
Gitter, Anthony [34 ,35 ]
Greene, Casey S. [2 ]
机构
[1] Univ Hawaii Manoa, Mol Biosci & Bioengn Grad Prog, Honolulu, HI USA
[2] Univ Penn, Perelman Sch Med, Dept Syst Pharmacol & Translat Therapeut, Philadelphia, PA 19104 USA
[3] Univ Penn, Perelman Sch Med, Genom & Computat Biol Grad Grp, Philadelphia, PA 19104 USA
[4] Univ Michigan, Sch Med, Dept Computat Med & Bioinformat, Ann Arbor, MI USA
[5] Harvard Med Sch, Boston, MA USA
[6] GlaxoSmithKline, Computat Biol & Stats, Target Sci, Stevenage, Herts, England
[7] Imperial Coll London, Data Sci Inst, London, England
[8] Princess Margaret Canc Ctr, Toronto, ON, Canada
[9] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[10] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[11] Vanderbilt Univ, Elect Engn & Comp Sci, 221 Kirkland Hall, Nashville, TN 37235 USA
[12] Drexel Univ, Dept Elect & Comp Engn, Ecol & Evolutionary Signal Proc & Informat Lab, Philadelphia, PA 19104 USA
[13] Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, Pittsburgh, PA USA
[14] Stanford Univ, Biophys Program, Stanford, CA 94305 USA
[15] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[16] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[17] Univ Virginia, Dept Comp Sci, Charlottesville, VA 22903 USA
[18] Broad Inst Harvard, Imaging Platform, Cambridge, MA USA
[19] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[20] Toyota Technol Inst, Chicago, IL USA
[21] Trinity Univ, Dept Comp Sci, San Antonio, TX USA
[22] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[23] NIEHS, NIH, Integrat Bioinformat, POB 12233, Res Triangle Pk, NC 27709 USA
[24] Howard Hughes Med Inst, Janelia Res Campus, Ashbum, VA USA
[25] NIH, Natl Ctr Biotechnol Informat, Bethesda, MD USA
[26] NIH, Natl Lib Med, Bethesda, MD USA
[27] Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL USA
[28] ClosedLoop Ai, Austin, TX USA
[29] Univ Colorado, Sch Med, Div Biomed Informat & Personalized Med, Aurora, CO USA
[30] Westfal Wilhelms Univ Munster, Inst Organ Chem, Munster, Germany
[31] Georgetown Univ, Med Ctr, Innovat Ctr Biomed Informat, Washington, DC 20007 USA
[32] Washington Univ, Dept Pathol & Immunol, St Louis, MO USA
[33] Brown Univ, Dept Med, Providence, RI 02912 USA
[34] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
[35] Morgridge Inst Res, Madison, WI 53715 USA
基金
美国国家科学基金会; 美国国家卫生研究院; 加拿大自然科学与工程研究理事会;
关键词
deep learning; genomics; precision medicine; machine learning; CONVOLUTIONAL NEURAL-NETWORKS; PROTEIN-PROTEIN INTERACTION; ELECTRONIC HEALTH RECORDS; COMPUTER-AIDED DETECTION; HIGH-THROUGHPUT; GENE-EXPRESSION; SECONDARY STRUCTURE; DRUG DISCOVERY; SINGLE-CELL; DECISION-SUPPORT;
D O I
10.1098/rsif.2017.0387
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems-patient classification, fundamental biological processes and treatment of patients-and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine.
引用
收藏
页数:47
相关论文
共 546 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Deep Learning with Differential Privacy
    Abadi, Martin
    Chu, Andy
    Goodfellow, Ian
    McMahan, H. Brendan
    Mironov, Ilya
    Talwar, Kunal
    Zhang, Li
    [J]. CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, : 308 - 318
  • [3] Informatics for unveiling hidden genome signatures
    Abe, T
    Kanaya, S
    Kinouchi, M
    Ichiba, Y
    Kozuki, T
    Ikemura, T
    [J]. GENOME RESEARCH, 2003, 13 (04) : 693 - 702
  • [4] Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning
    Abramoff, Michael David
    Lou, Yiyue
    Erginay, Ali
    Clarida, Warren
    Amelon, Ryan
    Folk, James C.
    Niemeijer, Meindert
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) : 5200 - 5206
  • [5] Predicting effective microRNA target sites in mammalian mRNAs
    Agarwal, Vikram
    Bell, George W.
    Nam, Jin-Wu
    Bartel, David P.
    [J]. ELIFE, 2015, 4
  • [6] High Resolution Models of Transcription Factor-DNA Affinities Improve In Vitro and In Vivo Binding Predictions
    Agius, Phaedra
    Arvey, Aaron
    Chang, William
    Noble, William Stafford
    Leslie, Christina
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (09)
  • [7] Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
    Alipanahi, Babak
    Delong, Andrew
    Weirauch, Matthew T.
    Frey, Brendan J.
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (08) : 831 - +
  • [8] Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data
    Aliper, Alexander
    Plis, Sergey
    Artemov, Artem
    Ulloa, Alvaro
    Mamoshina, Polina
    Zhavoronkov, Alex
    [J]. MOLECULAR PHARMACEUTICS, 2016, 13 (07) : 2524 - 2530
  • [9] Low Data Drug Discovery with One-Shot Learning
    Altae-Tran, Han
    Ramsundar, Bharath
    Pappu, Aneesh S.
    Pande, Vijay
    [J]. ACS CENTRAL SCIENCE, 2017, 3 (04) : 283 - 293
  • [10] Scalable metagenomic taxonomy classification using a reference genome database
    Ames, Sasha K.
    Hysom, David A.
    Gardner, Shea N.
    Lloyd, G. Scott
    Gokhale, Maya B.
    Allen, Jonathan E.
    [J]. BIOINFORMATICS, 2013, 29 (18) : 2253 - 2260