Sharp weak-type inequalities for Fourier multipliers and second-order Riesz transforms

被引:1
|
作者
Osekowski, Adam [1 ]
机构
[1] Univ Warsaw, Inst Math, Fac Math Informat & Mech, PL-02097 Warsaw, Poland
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2014年 / 12卷 / 08期
关键词
Fourier multiplier; Singular integral; Martingale; LOGARITHMIC INEQUALITIES; CONVEX INTEGRATION; MARTINGALES; COUNTEREXAMPLES; CONSTANTS;
D O I
10.2478/s11533-014-0401-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study sharp weak-type inequalities for a wide class of Fourier multipliers resulting from modulation of the jumps of L,vy processes. In particular, we obtain optimal estimates for second-order Riesz transforms, which lead to interesting a priori bounds for smooth functions on a"e (d) . The proofs rest on probabilistic methods: we deduce the above inequalities from the corresponding estimates for martingales. To obtain the lower bounds, we exploit the properties of laminates, important probability measures on the space of matrices of dimension 2x2, and some transference-type arguments.
引用
收藏
页码:1198 / 1213
页数:16
相关论文
共 26 条
  • [21] Sharp Weak Type Inequalities for the Dyadic Maximal Operator
    Nikolidakis, Eleftherios N.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (01) : 115 - 139
  • [22] Sharp Weak Type Inequalities for Fractional Integral Operators
    Banuelos, Rodrigo
    Osekowski, Adam
    POTENTIAL ANALYSIS, 2017, 47 (01) : 103 - 121
  • [23] WEIGHTED INEQUALITIES OF FEFFERMAN-STEIN TYPE FOR RIESZ-SCHRODINGER TRANSFORMS
    Bongioanni, B.
    Harboure, E.
    Quijano, P.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (03): : 775 - 803
  • [24] A note on second order Riesz transforms in 3-dimensional Lie groups
    Baudoin, Fabrice
    Chen, Li
    ARCHIV DER MATHEMATIK, 2022, 118 (03) : 291 - 304
  • [25] Second order Sobolev type inequalities in the hyperbolic spaces
    Van Hoang Nguyen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (02) : 1157 - 1181
  • [26] Second-order Sobolev inequalities on a class of Riemannian manifolds with nonnegative Ricci curvature
    Barbosa, Ezequiel
    Kristaly, Alexandru
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (01) : 35 - 45