Turan numbers for odd wheels

被引:14
作者
Dzido, Tomasz [1 ]
Jastrzebski, Andrzej [2 ]
机构
[1] Univ Gdansk, Fac Math Phys & Informat, Inst Informat, PL-80308 Gdansk, Poland
[2] Gdansk Univ Technol, Fac Elect Telecommun & Informat, Dept Algorithms & Syst Modeling, PL-80233 Gdansk, Poland
关键词
Turan numbers; Odd wheels;
D O I
10.1016/j.disc.2017.10.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Turan number ex(n, G) is the maximum number of edges in any n-vertex graph that does not contain a subgraph isomorphic to G. A wheel W-n is a graph on n vertices obtained from a Cn-1 by adding one vertex w and making w adjacent to all vertices of the Cn-1. We obtain two exact values for small wheels: ex(n, W-5) = left perpendicularn(2/4) + n/2right perpendicular, ex(n, W-7) = left perpendicularn(2)/4 + n/2 +1right perpendicular. Given that ex(n, W-6) is already known, this paper completes the spectrum for all wheels up to 7 vertices. In addition, we present the construction which gives us the lower bound ex(n, W2k+1) > + left perpendicularn(2)/4 + right perpendicular + left perpendicularn/2 right perpendicular in general case. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1150 / 1154
页数:5
相关论文
共 8 条
  • [1] Bataineh MSA, 2015, JORDAN J MATH STAT, V8, P107
  • [2] Dzido T, 2006, ELECTRON J COMB, V13
  • [3] A Note on Turan Numbers for Even Wheels
    Dzido, Tomasz
    [J]. GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1305 - 1309
  • [4] Erdos P., 1964, THEORY GRAPHS ITS AP, P29
  • [5] Mantel W., 1907, WISKUNDIGE OPGAVEN, V10, P60
  • [6] McKay B.D., 2014, J SYMBOLIC COMPUT, V60
  • [7] Simonovits M., 1968, Theory of Graphs, P279
  • [8] Turan P., 1941, Mat. Fiz. Lapok, V48, P436