In vitro modeling of solid tumor interactions with perfused blood vessels

被引:57
作者
Kwak, Tae Joon [1 ]
Lee, Esak [1 ]
机构
[1] Cornell Univ, Nancy E & Peter C Meinig Sch Biomed Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
MESENCHYMAL STEM-CELLS; BIOMIMETIC MODEL; ANGIOGENESIS; LYMPHANGIOGENESIS; INHIBITION; CULTURE; PEPTIDE;
D O I
10.1038/s41598-020-77180-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecular crosstalk between intra-tumor blood vessels and tumor cells plays many critical roles in tumorigenesis and cancer metastasis. However, it has been very difficult to investigate the biochemical mechanisms underlying the overlapping, multifactorial processes that occur at the tumor-vascular interface using conventional murine models alone. Moreover, traditional two-dimensional (2D) culture models used in cancer research do not recapitulate aspects of the 3D tumor microenvironment. In the present study, we introduce a microfluidic model of the solid tumor-vascular interface composed of a human umbilical vein endothelial cell (HUVEC)-lined, perfusable, bioengineered blood vessel and tumor spheroids embedded in an extracellular matrix (ECM). We sought to optimize our model by varying the composition of the tumor spheroids (MDA-MB-231 breast tumor cells+mesenchymal stem cells (MSCs)/human lung fibroblasts (HLFs)/HUVECs) and the extracellular matrix (ECM: collagen, Matrigel, and fibrin gels with or without free HLFs) that we used. Our results indicate that culturing tumor spheroids containing MDA-MB-231 cells+HUVECs in an HLF-laden, fibrin-based ECM within our microfluidic device optimally (1) enhances the sprouting and migration of tumor spheroids, (2) promotes angiogenesis, (3) facilitates vascular invasion, and (4) preserves the structural integrity and functionality of HUVEC-lined microfluidic channels. This model may provide a platform for drug screening and mechanism studies on solid tumor interactions with functional blood vessels.
引用
收藏
页数:9
相关论文
共 35 条
  • [1] 3D Microfluidic Bone Tumor Microenvironment Comprised of Hydroxyapatite/Fibrin Composite
    Ahn, Jungho
    Lim, Jungeun
    Jusoh, Norhana
    Lee, Jungseub
    Park, Tae-Eun
    Kim, YongTae
    Kim, Jangho
    Jeon, Noo Li
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7 (JUL)
  • [2] Three-Dimensional Cell Culture: A Breakthrough in Vivo
    Antoni, Delphine
    Burckel, Helene
    Josset, Elodie
    Noel, Georges
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (03): : 5517 - 5527
  • [3] Screening therapeutic EMT blocking agents in a three-dimensional microenvironment
    Aref, Amir R.
    Huang, Ruby Yun-Ju
    Yu, Weimiao
    Chua, Kian-Ngiap
    Sun, Wei
    Tu, Ting-Yuan
    Bai, Jing
    Sim, Wen-Jing
    Zervantonakis, Ioannis K.
    Thiery, Jean Paul
    Kamm, Roger D.
    [J]. INTEGRATIVE BIOLOGY, 2013, 5 (02) : 381 - 389
  • [4] Mesenchymal Stem Cells in the Tumor Microenvironment
    Atiya, Huda
    Frisbie, Leonard
    Pressimone, Catherine
    Coffman, Lan
    [J]. TUMOR MICROENVIRONMENT: NON-HEMATOPOIETIC CELLS, 2020, 1234 : 31 - 42
  • [5] Evaluating natural killer cell cytotoxicity against solid tumors using a microfluidic model
    Ayuso, Jose M.
    Truttschel, Regan
    Gong, Max M.
    Humayun, Mouhita
    Virumbrales-Munoz, Maria
    Vitek, Ross
    Felder, Mildred
    Gillies, Stephen D.
    Sondel, Paul
    Wisinski, Kari B.
    Patankar, Manish
    Beebe, David J.
    Skala, Melissa C.
    [J]. ONCOIMMUNOLOGY, 2019, 8 (03):
  • [6] Novel application of adipose-derived mesenchymal stem cells via producing antiangiogenic factor TSP-1 in lung metastatic melanoma animal model
    Bagheri-Mohammadi, Saeid
    Moradian-Tehrani, Rana
    Noureddini, Mahdi
    Alani, Behrang
    [J]. BIOLOGICALS, 2020, 68 : 9 - 18
  • [7] Biomimetic Model of Tumor Microenvironment on Microfluidic Platform
    Chung, Minhwan
    Ahn, Jungho
    Son, Kyungmin
    Kim, Sudong
    Jeon, Noo Li
    [J]. ADVANCED HEALTHCARE MATERIALS, 2017, 6 (15)
  • [8] Corneal Mesenchymal Stromal Cells Are Directly Antiangiogenic via PEDF and sFLT-1
    Eslani, Medi
    Putra, Ilham
    Shen, Xiang
    Hamouie, Judy
    Afsharkhamseh, Neda
    Besharat, Soroush
    Rosenblatt, Mark I.
    Dana, Reza
    Hematti, Peiman
    Djalilian, Ali R.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (12) : 5507 - 5517
  • [9] Spheroid culture as a tool for creating 3D complex tissues
    Fennema, Eelco
    Rivron, Nicolas
    Rouwkema, Jeroen
    van Blitterswijk, Clemens
    de Boer, Jan
    [J]. TRENDS IN BIOTECHNOLOGY, 2013, 31 (02) : 108 - 115
  • [10] FOLKMAN J, 1971, NEW ENGL J MED, V285, P1182