Commuting Jacobi Operators on Real Hypersurfaces of Type B in the Complex Quadric

被引:20
作者
Lee, Hyunjin [1 ]
Suh, Young Jin [2 ,3 ]
机构
[1] Kyungpook Natl Univ, Res Inst Real & Complex Manifolds RIRCM, Daegu 41566, South Korea
[2] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
[3] Kyungpook Natl Univ, RIRCM, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
Commuting Jacobi operator; A-isotropic; A-principal; Kahler structure; Complex conjugation; Complex quadric; TOTALLY GEODESIC SUBMANIFOLDS; EINSTEIN HYPERSURFACES; CONTACT HYPERSURFACES;
D O I
10.1007/s11040-020-09370-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, first, we investigate the commuting property between the normal Jacobi operator (R) over bar (N) and the structure Jacobi operator R-xi for Hopf real hypersurfaces in the complex quadric Q(m) = SOm+2/SOmSO2 for m >= 3, which is defined by (R) over bar R-N(xi) = R-xi(R) over bar (N). Moreover, a new characterization of Hopf real hypersurfaces with U-principal singular normal vector field in the complex quadric Q(m) is obtained. By virtue of this result, we can give a remarkable classification of Hopf real hypersurfaces in the complex quadric Q(m) with commuting Jacobi operators.
引用
收藏
页数:21
相关论文
共 32 条
  • [1] Berndt J, IN PRESS
  • [2] CONTACT HYPERSURFACES IN NONCOMPACT COMPLEX GRASSMANNIANS OF RANK TWO
    Berndt, Juergen
    Lee, Hyunjin
    Suh, Young Jin
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (11)
  • [3] REAL HYPERSURFACES WITH ISOMETRIC REEB FLOW IN COMPLEX QUADRICS
    Berndt, Jurgen
    Suh, Young Jin
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (07)
  • [4] Berndt U, 2015, P AM MATH SOC, V143, P2637
  • [5] Manifolds with commuting Jacobi operators
    Brozos-Vazquez, Miguel
    Gilkey, Peter
    [J]. JOURNAL OF GEOMETRY, 2007, 86 (1-2) : 21 - 30
  • [6] The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians
    de Dios Perez, Juan
    Suh, Young Jin
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (01) : 211 - 235
  • [7] On the structure vector field of a real hypersurface in complex quadric
    de Dios Perez, Juan
    [J]. OPEN MATHEMATICS, 2018, 16 : 185 - 189
  • [8] Real Hypersurfaces with Killing Shape Operator in the Complex Quadric
    de Dios Perez, Juan
    Jeong, Imsoon
    Ko, Junhyung
    Suh, Young Jin
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (01)
  • [9] do Carmo M. P, 1992, BIRKHAUSER
  • [10] Helgason S., 2001, GRADUATE STUDIES MAT, V34