Performance Comparison of Population-Based Meta-Heuristic Algorithms in Affine Template Matching

被引:5
|
作者
Sato, Junya [1 ]
Yamada, Takayoshi [1 ]
Ito, Kazuaki [1 ]
Akashi, Takuya [2 ]
机构
[1] Gifu Univ, Fac Engn, 1-1 Yanagido, Gifu 5011193, Japan
[2] Iwate Univ, Fac Sci & Engn, 4-3-5 Ueda, Morioka, Iwate 0208551, Japan
关键词
population‐ based meta‐ heuristic algorithm; evolutionary computation; affine template matching; DIFFERENTIAL EVOLUTION;
D O I
10.1002/tee.23274
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, population-based meta-heuristic algorithms-artificial bee colony, differential evolution, particle swarm optimization, and real-coded genetic algorithm-are applied to affine template matching for performance comparison. It is necessary to optimize six parameters for affine template matching. This is a combinatorial optimization problem, and the number of candidate solutions is very large. For such a problem, population-based meta-heuristic algorithms can efficiently search a global optimum. There is research that applies the algorithms to affine template matching. However, they select a specific algorithm without understanding the characteristics of affine template matching and comparing different algorithms. This means the selected algorithm may not be suitable for affine template matching. Hence, this research first analyzes the characteristics of affine template matching and compares the performance of the four algorithms. In addition, we propose a new method to measure population diversity for performance comparison. Finally, we confirmed that artificial bee colony achieves the best performance of the four methods. (c) 2020 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.
引用
收藏
页码:117 / 126
页数:10
相关论文
共 50 条
  • [21] Comparison of Meta-Heuristic Algorithms for Task Scheduling in Distributed Stream Processing
    Kim, Dohan
    Wu, Aming
    Kwon, Young-Woo
    2022 IEEE 27TH PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING (PRDC), 2022, : 252 - 255
  • [22] Evaluating the performance of meta-heuristic algorithms on CEC 2021 benchmark problems
    Mohamed, Ali Wagdy
    Sallam, Karam M.
    Agrawal, Prachi
    Hadi, Anas A.
    Mohamed, Ali Khater
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (02): : 1493 - 1517
  • [23] Evaluating the performance of meta-heuristic algorithms on CEC 2021 benchmark problems
    Ali Wagdy Mohamed
    Karam M. Sallam
    Prachi Agrawal
    Anas A. Hadi
    Ali Khater Mohamed
    Neural Computing and Applications, 2023, 35 : 1493 - 1517
  • [24] Performance Analysis of Meta-Heuristic Algorithms for Optimal PI Tuning of PFC
    Mamizadeh, Ali
    Genc, Naci
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2024, 52 (07) : 1039 - 1053
  • [25] Image Segmentation Using Meta-heuristic Algorithms
    Saxena, Varun
    Goel, Deeksha
    Rawat, Tarun Kumar
    2018 INTERNATIONAL CONFERENCE ON COMPUTING, POWER AND COMMUNICATION TECHNOLOGIES (GUCON), 2018, : 661 - 666
  • [26] Significance Relations for the Benchmarking of Meta-Heuristic Algorithms
    Koeppen, Mario
    Ohnishi, Kei
    2013 13TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2013, : 253 - 258
  • [27] Estimation of Muskingum parameter by meta-heuristic algorithms
    Orouji, Hossein
    Bozorg-Haddad, Omid
    Fallah-Mehdipour, Elahe
    Marino, Miguel A.
    Barati, Reza
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2014, 167 (06) : 365 - 367
  • [28] Groundwater Model Calibration by Meta-Heuristic Algorithms
    O. Bozorg Haddad
    M. Mohammad Rezapour Tabari
    E. Fallah-Mehdipour
    M. A. Mariño
    Water Resources Management, 2013, 27 : 2515 - 2529
  • [29] Groundwater Model Calibration by Meta-Heuristic Algorithms
    Bozorg-Haddad, Omid
    Tabari, M. Mohammad Rezapour
    Fallah-Mehdipour, E.
    Marino, M. A.
    WATER RESOURCES MANAGEMENT, 2013, 27 (07) : 2515 - 2529
  • [30] Meta-Heuristic Algorithms for Hydrologic Frequency Analysis
    Yousef Hassanzadeh
    Amin Abdi
    Siamak Talatahari
    Vijay P. Singh
    Water Resources Management, 2011, 25 : 1855 - 1879