Integral distance graphs

被引:0
作者
Chen, JJ [1 ]
Chang, GJ [1 ]
Huang, KC [1 ]
机构
[1] PROVIDENCE UNIV,DEPT MATH APPL,TAICHUNG 43309,TAIWAN
关键词
distance graph; vertex; coloring; chromatic number;
D O I
10.1002/(SICI)1097-0118(199708)25:4<287::AID-JGT6>3.3.CO;2-F
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose D is a subset of all positive integers. The distance graph G(Z, D) with distance set D is the graph with vertex set Z, and two vertices x and y are adjacent if and only if \x - y\ is an element of D. This paper studies the chromatic number chi(Z, D) of G(Z, D). In particular, we prove that chi(Z,D) less than or equal to \D\ + 1 when \D\ is finite. Exact values of chi(G, D) are also determined for some D with \D\ = 3. (C) 1997 John Wiley & Sons, Inc.
引用
收藏
页码:287 / 294
页数:8
相关论文
共 18 条
[1]  
BONDY JA, 1976, GRAPH THEORY APPLICA
[2]  
CHEN JJ, 1996, THESIS NATL CHIAO TU
[3]   A CHARACTERIZATION IN Z(N) OF FINITE UNIT-DISTANCE GRAPHS IN R(N) [J].
CHILAKAMARRI, KB .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 59 (01) :156-160
[4]  
CHILAKAMARRI KB, IN PRESS AEQUATIONES
[5]  
Chilakamarri Kiran B., 1993, B I COMBIN APPL, V8, P39
[6]  
Croft H. T., 1991, SPRINGER SCI BUSINES
[7]   The chromatic numbers of distance graphs [J].
Deuber, WA ;
Zhu, XD .
DISCRETE MATHEMATICS, 1997, 165 :195-204
[8]   COLORING THE REAL LINE [J].
EGGLETON, RB ;
ERDOS, P ;
SKILTON, DK .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 39 (01) :86-100
[9]  
EGGLETON RB, 1988, ARS COMBINATORIA, V26B, P153
[10]   COLORING PRIME DISTANCE GRAPHS [J].
EGGLETON, RB ;
ERDOS, P ;
SKILTON, DK .
GRAPHS AND COMBINATORICS, 1990, 6 (01) :17-32