Asymptotic estimates for two-dimensional sloshing modes

被引:6
|
作者
Davis, AMJ
Weidman, PD
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
[2] Univ Colorado, Dept Mech Engn, Colorado Springs, CO 80903 USA
关键词
D O I
10.1063/1.870352
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Estimates for the natural frequencies of linear two-dimensional sloshing modes in channels composed of two planar walls, either opening or closing at the bottom, are derived using conformal transformation techniques. The results are asymptotic in the sense that the wavelength of surface waves are assumed small in comparison to the horizontal extent of the quiescent free surface. An experiment was constructed to test the asymptotic theory for odd sloshing modes in two symmetric and three asymmetric containers. Good corroboration between measurement and theory is obtained when the increase in frequency due to surface tension, not accounted for in the theoretical analysis, is estimated and removed from the experimental data. (C) 2000 American Institute of Physics. [S1070-6631(00)00904-1].
引用
收藏
页码:971 / 978
页数:8
相关论文
共 50 条
  • [31] Asymptotic two-stage two-dimensional quantizer
    Kawabata, T
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 152 - 152
  • [32] A two-dimensional asymptotic model for capillary collapse
    Stokes, Yvonne M.
    JOURNAL OF FLUID MECHANICS, 2021, 909
  • [33] Asymptotic expansions for two-dimensional hypersingular integrals
    Lyness, JN
    Monegato, G
    NUMERISCHE MATHEMATIK, 2005, 100 (02) : 293 - 329
  • [34] Asymptotic Expansions for Two-Dimensional Hypersingular Integrals
    J.N. Lyness
    G. Monegato
    Numerische Mathematik, 2005, 100 : 293 - 329
  • [35] ASYMPTOTIC (STATISTICAL) PERIODICITY IN TWO-DIMENSIONAL MAPS
    Nakamura, Fumihiko
    Mackey, Michael C.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (08): : 4285 - 4303
  • [36] Asymptotic behaviour for a two-dimensional thermoolastic model
    Fabrizio, M.
    Lazzari, B.
    Rivera, J. M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (05) : 549 - 566
  • [37] There is no asymptotic PTAS for two-dimensional vector packing
    Inst. für Mathematik B, TU Graz, Steyrergasse 30, A-8010 Graz, Austria
    Inf. Process. Lett., 6 (293-297):
  • [38] Asymptotic capacity of the two-dimensional square constraint
    Nagy, Z
    Zeger, K
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 180 - 180
  • [39] There is no asymptotic PTAS for two-dimensional vector packing
    Woeginger, GJ
    INFORMATION PROCESSING LETTERS, 1997, 64 (06) : 293 - 297
  • [40] Invariant Estimates of Two-Dimensional Oscillatory Integrals
    Safarov, A. R.
    MATHEMATICAL NOTES, 2018, 104 (1-2) : 293 - 302