Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens

被引:751
作者
Zheng, Zuyu [1 ]
Abu Qamar, Synan [1 ]
Chen, Zhixiang [1 ]
Mengiste, Tesfaye [1 ]
机构
[1] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA
关键词
disease resistance; Botrytis cinerea; Alternaria brassicicola; necrotroph; Pseudomonas syringae; WRKY33 transcription factor;
D O I
10.1111/j.1365-313X.2006.02901.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant WRKY transcription factors are key regulatory components of plant responses to microbial infection. In addition to regulating the expression of defense-related genes, WRKY transcription factors have also been shown to regulate cross-talk between jasmonate- and salicylate-regulated disease response pathways. The two pathways mediate resistance against different types of microbial pathogens, and there are numerous reports of antagonistic interactions between them. Here we show that mutations of the Arabidopsis WRKY33 gene encoding a WRKY transcription factor cause enhanced susceptibility to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola concomitant with reduced expression of the jasmonate-regulated plant defensin PDF1.2 gene. Ectopic over-expression of WRKY33, on the other hand, increases resistance to the two necrotrophic fungal pathogens. The wrky33 mutants do not show altered responses to a virulent strain of the bacterial pathogen Pseudomonas syringae, although the ectopic expression of WRKY33 results in enhanced susceptibility to this pathogen. The susceptibility of WRKY33-over-expressing plants to P. syringae is associated with reduced expression of the salicylate-regulated PR-1 gene. The WRKY33 transcript is induced in response to pathogen infection, or treatment with salicylate or the paraquat herbicide that generates activated oxygen species in exposed cells. WRKY33 is localized to the nucleus of plant cells and recognizes DNA molecules containing the TTGACC W-box sequence. Together, these results indicate that pathogen-induced WRKY33 is an important transcription factor that regulates the antagonistic relationship between defense pathways mediating responses to P. syringae and necrotrophic pathogens.
引用
收藏
页码:592 / 605
页数:14
相关论文
共 62 条
  • [1] Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection
    AbuQamar, Synan
    Chen, Xi
    Dhawan, Rahul
    Bluhm, Burton
    Salmeron, John
    Lam, Stephen
    Dietrich, Robert A.
    Mengiste, Tesfaye
    [J]. PLANT JOURNAL, 2006, 48 (01) : 28 - 44
  • [2] Genome-wide Insertional mutagenesis of Arabidopsis thaliana
    Alonso, JM
    Stepanova, AN
    Leisse, TJ
    Kim, CJ
    Chen, HM
    Shinn, P
    Stevenson, DK
    Zimmerman, J
    Barajas, P
    Cheuk, R
    Gadrinab, C
    Heller, C
    Jeske, A
    Koesema, E
    Meyers, CC
    Parker, H
    Prednis, L
    Ansari, Y
    Choy, N
    Deen, H
    Geralt, M
    Hazari, N
    Hom, E
    Karnes, M
    Mulholland, C
    Ndubaku, R
    Schmidt, I
    Guzman, P
    Aguilar-Henonin, L
    Schmid, M
    Weigel, D
    Carter, DE
    Marchand, T
    Risseeuw, E
    Brogden, D
    Zeko, A
    Crosby, WL
    Berry, CC
    Ecker, JR
    [J]. SCIENCE, 2003, 301 (5633) : 653 - 657
  • [3] BASIC LOCAL ALIGNMENT SEARCH TOOL
    ALTSCHUL, SF
    GISH, W
    MILLER, W
    MYERS, EW
    LIPMAN, DJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) : 403 - 410
  • [4] The MAP kinase substrate MKS1 is a regulator of plant defense responses
    Andreasson, E
    Jenkins, T
    Brodersen, P
    Thorgrimsen, S
    Petersen, NHT
    Zhu, SJ
    Qiu, JL
    Micheelsen, P
    Rocher, A
    Petersen, M
    Newman, MA
    Nielsen, HB
    Hirt, H
    Somssich, I
    Mattsson, O
    Mundy, J
    [J]. EMBO JOURNAL, 2005, 24 (14) : 2579 - 2589
  • [5] MAP kinase signalling cascade in Arabidopsis innate immunity
    Asai, T
    Tena, G
    Plotnikova, J
    Willmann, MR
    Chiu, WL
    Gomez-Gomez, L
    Boller, T
    Ausubel, FM
    Sheen, J
    [J]. NATURE, 2002, 415 (6875) : 977 - 983
  • [6] USE OF ARABIDOPSIS-THALIANA DEFENSE-RELATED MUTANTS TO DISSECT THE PLANT-RESPONSE TO PATHOGENS
    AUSUBEL, FM
    KATAGIRI, F
    MINDRINOS, M
    GLAZEBROOK, J
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) : 4189 - 4196
  • [7] Fungal and plant gene expression during synchronized infection of tomato leaves by Botrytis cinerea
    Benito, EP
    ten Have, A
    van't Klooster, JW
    van Kan, JAL
    [J]. EUROPEAN JOURNAL OF PLANT PATHOLOGY, 1998, 104 (02) : 207 - 220
  • [8] The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats
    Cao, H
    Glazebrook, J
    Clarke, JD
    Volko, S
    Dong, XN
    [J]. CELL, 1997, 88 (01) : 57 - 63
  • [9] Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor
    Chen, CH
    Chen, ZX
    [J]. PLANT PHYSIOLOGY, 2002, 129 (02) : 706 - 716
  • [10] Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco
    Chen, CH
    Chen, ZX
    [J]. PLANT MOLECULAR BIOLOGY, 2000, 42 (02) : 387 - 396