Joint hierarchical models for sparsely sampled high-dimensional LiDAR and forest variables

被引:10
作者
Finley, Andrew O. [1 ]
Banerjee, Sudipto [2 ]
Zhou, Yuzhen [3 ]
Cook, Bruce D. [4 ]
Babcock, Chad [5 ]
机构
[1] Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA
[2] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
[3] Univ Nebraska Lincoln, Dept Stat, Lincoln, NE 68583 USA
[4] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20742 USA
[5] Univ Washington, Sch Environm & Forest Sci, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Forest biomass; Uncertainty quantification; Functional analysis; Dimension reduction; Predictive process; Hierarchical models; Markov chain Monte Carlo; SPATIAL REGRESSION-MODELS; INVENTORY; COMPLEX; BIOMASS;
D O I
10.1016/j.rse.2016.12.004
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recent advancements in remote sensing technology, specifically Light Detection and Ranging (LiDAR) sensors, provide the data needed to quantify forest characteristics at a fine spatial resolution over large geographic domains. From an inferential standpoint, there is interest in prediction and interpolation of the often sparsely sampled and spatially misaligned LiDAR signals and forest variables. We propose a fully process-based Bayesian hierarchical model for above ground biomass (AGB) and LiDAR signals. The process based framework offers richness in inferential capabilities, e.g., inference on the entire underlying processes instead of estimates only at pre-specified points. Key challenges we obviate include misalignment between the AGB observations and LiDAR signals and the high-dimensionality in the model emerging from LiDAR signals in conjunction with the large number of spatial locations. We offer simulation experiments to evaluate our proposed models and also apply them to a challenging dataset comprising LiDAR and spatially coinciding forest inventory variables collected on the Penobscot Experimental Forest (PEF), Maine. Our key substantive contributions include AGB data products with associated measures of uncertainty for the PEF and, more broadly, a methodology that should find use in a variety of current and upcoming forest variable mapping efforts using sparsely sampled remotely sensed high-dimensional data. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:149 / 161
页数:13
相关论文
共 45 条
[1]   The ICESat-2 Laser Altimetry Mission [J].
Abdalati, Waleed ;
Zwally, H. Jay ;
Bindschadler, Robert ;
Csatho, Bea ;
Farrell, Sinead Louise ;
Fricker, Helen Amanda ;
Harding, David ;
Kwok, Ronald ;
Lefsky, Michael ;
Markus, Thorsten ;
Marshak, Alexander ;
Neumann, Thomas ;
Palm, Stephen ;
Schutz, Bob ;
Smith, Ben ;
Spinhirne, James ;
Webb, Charles .
PROCEEDINGS OF THE IEEE, 2010, 98 (05) :735-751
[2]   Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest [J].
Anderson, Jeanne E. ;
Plourde, Lucie C. ;
Martin, Mary E. ;
Braswell, Bobby H. ;
Smith, Marie-Louise ;
Dubayah, Ralph O. ;
Hofton, Michelle A. ;
Blair, J. Bryan .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) :1856-1870
[3]  
[Anonymous], 2013, Bayesian data analysis, third edition
[4]  
[Anonymous], 1999, INTERPOLATION SPATIA
[5]   Environmental and Biotic Controls over Aboveground Biomass Throughout a Tropical Rain Forest [J].
Asner, Gregory P. ;
Hughes, R. Flint ;
Varga, Timothy A. ;
Knapp, David E. ;
Kennedy-Bowdoin, Ty .
ECOSYSTEMS, 2009, 12 (02) :261-278
[6]   Multivariate Spatial Regression Models for Predicting Individual Tree Structure Variables Using LiDAR Data [J].
Babcock, Chad ;
Matney, Jason ;
Finley, Andrew O. ;
Weiskittel, Aaron ;
Cook, Bruce D. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (01) :6-14
[7]   Stationary process approximation for the analysis of large spatial datasets [J].
Banerjee, Sudipto ;
Gelfand, Alan E. ;
Finley, Andrew O. ;
Sang, Huiyan .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :825-848
[8]   Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data [J].
Blair, JB ;
Hofton, MA .
GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (16) :2509-2512
[9]  
CMS, 2010, NASA CARB MON SYST
[10]   NASA Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager [J].
Cook, Bruce D. ;
Corp, Lawrence A. ;
Nelson, Ross F. ;
Middleton, Elizabeth M. ;
Morton, Douglas C. ;
McCorkel, Joel T. ;
Masek, Jeffrey G. ;
Ranson, Kenneth J. ;
Vuong Ly ;
Montesano, Paul M. .
REMOTE SENSING, 2013, 5 (08) :4045-4066