!Viva la mitochondria!: harnessing yeast mitochondria for chemical production

被引:19
作者
Duran, Lisset [1 ]
Lopez, Jose Montano [2 ]
Avalos, Jose L. [1 ,2 ,3 ,4 ]
机构
[1] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Chem & Biol Engn, 101 Hoyt Lab,25 William St, Princeton, NJ 08544 USA
[3] Princeton Univ, Andlinger Ctr Energy & Environm, 101 Hoyt Lab,25 William St, Princeton, NJ 08544 USA
[4] Princeton Univ, Princeton Environm Inst, Princeton, NJ 08544 USA
基金
美国能源部; 美国国家科学基金会;
关键词
mitochondria; metabolic engineering; mitochondrial engineering; metabolism; chemical production; biotechnology; ENGINEERED SACCHAROMYCES-CEREVISIAE; ACETYL-COA METABOLISM; ISOBUTANOL PRODUCTION; INTERMEMBRANE SPACE; FUNCTIONAL RECONSTITUTION; PYRUVATE-DEHYDROGENASE; IDENTIFICATION; CARRIER; PATHWAY; PROTEIN;
D O I
10.1093/femsyr/foaa037
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The mitochondria, often referred to as the powerhouse of the cell, offer a unique physicochemical environment enriched with a distinct set of enzymes, metabolites and cofactors ready to be exploited for metabolic engineering. In this review, we discuss how the mitochondrion has been engineered in the traditional sense of metabolic engineering or completely bypassed for chemical production. We then describe the more recent approach of harnessing the mitochondria to compartmentalize engineered metabolic pathways, including for the production of alcohols, terpenoids, sterols, organic acids and other valuable products. We explain the different mechanisms by which mitochondrial compartmentalization benefits engineered metabolic pathways to boost chemical production. Finally, we discuss the key challenges that need to be overcome to expand the applicability of mitochondrial engineering and reach the full potential of this emerging field.
引用
收藏
页数:20
相关论文
共 122 条
  • [91] Cytosolic Iron-Sulfur Cluster Assembly (CIA) System: Factors, Mechanism, and Relevance to Cellular Iron Regulation
    Sharma, Anil K.
    Pallesen, Leif J.
    Spang, Robert J.
    Walden, William E.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (35) : 26745 - 26751
  • [92] Expression of programmed death ligand-1 on tumor cells varies pre and post chemotherapy in non-small cell lung cancer
    Sheng, Jin
    Fang, Wenfeng
    Yu, Juan
    Chen, Nan
    Zhan, Jianhua
    Ma, Yuxiang
    Yang, Yunpeng
    Yanhuang
    Zhao, Hongyun
    Zhang, Li
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [93] Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae
    Shi, Shuobo
    Si, Tong
    Liu, Zihe
    Zhang, Hongfang
    Ang, Ee Lui
    Zhao, Huimin
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [94] Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
    Shiba, Yoichiro
    Paradise, Eric M.
    Kirby, James
    Ro, Dae-Kyun
    Keasing, Jay D.
    [J]. METABOLIC ENGINEERING, 2007, 9 (02) : 160 - 168
  • [95] Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae
    Si, Tong
    Luo, Yunzi
    Xiao, Han
    Zhao, Huimin
    [J]. METABOLIC ENGINEERING, 2014, 22 : 60 - 68
  • [96] Transport of arginine and ornithine into isolated mitochondria of Saccharomyces cerevisiae
    Soetens, O
    Crabeel, M
    El Moualij, B
    Duyckaerts, C
    Sluse, F
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1998, 258 (02): : 702 - 709
  • [97] Quantitative Profiling for Substrates of the Mitochondrial Presequence Processing Protease Reveals a Set of Nonsubstrate Proteins Increased upon Proteotoxic Stress
    Surkhart, Julia M.
    Taskin, Asli A.
    Zahedi, Rene P.
    Voegtle, F. -Nora
    [J]. JOURNAL OF PROTEOME RESEARCH, 2015, 14 (11) : 4550 - 4563
  • [98] n-Butanol production in S-cerevisiae: co-ordinate use of endogenous and exogenous pathways
    Swidah, R.
    Ogunlabi, O.
    Grant, C. M.
    Ashe, M. P.
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2018, 102 (22) : 9857 - 9866
  • [99] Total biosynthesis of hydrocortisone from a simple carbon source in yeast
    Szczebara, FM
    Chandelier, C
    Villeret, C
    Masurel, A
    Bourot, S
    Duport, C
    Blanchard, S
    Groisillier, A
    Testet, E
    Costaglioli, P
    Cauet, G
    Degryse, E
    Balbuena, D
    Winter, J
    Achstetter, T
    Spagnoli, R
    Pompon, D
    Dumas, B
    [J]. NATURE BIOTECHNOLOGY, 2003, 21 (02) : 143 - 149
  • [100] Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel
    Teo, Wei Suong
    Ling, Hua
    Yu, Ai-Qun
    Chang, Matthew Wook
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2015, 8