!Viva la mitochondria!: harnessing yeast mitochondria for chemical production

被引:19
作者
Duran, Lisset [1 ]
Lopez, Jose Montano [2 ]
Avalos, Jose L. [1 ,2 ,3 ,4 ]
机构
[1] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Chem & Biol Engn, 101 Hoyt Lab,25 William St, Princeton, NJ 08544 USA
[3] Princeton Univ, Andlinger Ctr Energy & Environm, 101 Hoyt Lab,25 William St, Princeton, NJ 08544 USA
[4] Princeton Univ, Princeton Environm Inst, Princeton, NJ 08544 USA
基金
美国能源部; 美国国家科学基金会;
关键词
mitochondria; metabolic engineering; mitochondrial engineering; metabolism; chemical production; biotechnology; ENGINEERED SACCHAROMYCES-CEREVISIAE; ACETYL-COA METABOLISM; ISOBUTANOL PRODUCTION; INTERMEMBRANE SPACE; FUNCTIONAL RECONSTITUTION; PYRUVATE-DEHYDROGENASE; IDENTIFICATION; CARRIER; PATHWAY; PROTEIN;
D O I
10.1093/femsyr/foaa037
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The mitochondria, often referred to as the powerhouse of the cell, offer a unique physicochemical environment enriched with a distinct set of enzymes, metabolites and cofactors ready to be exploited for metabolic engineering. In this review, we discuss how the mitochondrion has been engineered in the traditional sense of metabolic engineering or completely bypassed for chemical production. We then describe the more recent approach of harnessing the mitochondria to compartmentalize engineered metabolic pathways, including for the production of alcohols, terpenoids, sterols, organic acids and other valuable products. We explain the different mechanisms by which mitochondrial compartmentalization benefits engineered metabolic pathways to boost chemical production. Finally, we discuss the key challenges that need to be overcome to expand the applicability of mitochondrial engineering and reach the full potential of this emerging field.
引用
收藏
页数:20
相关论文
共 122 条
  • [1] Alberts B, 2002, MOL BIOL CELL, P627
  • [2] The Influence of Crowding Conditions on the Thermodynamic Feasibility of Metabolic Pathways
    Angeles-Martinez, Liliana
    Theodoropoulos, Constantinos
    [J]. BIOPHYSICAL JOURNAL, 2015, 109 (11) : 2394 - 2405
  • [3] Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
    Avalos, Jose L.
    Fink, Gerald R.
    Stephanopoulos, Gregory
    [J]. NATURE BIOTECHNOLOGY, 2013, 31 (04) : 335 - +
  • [4] The yeast mitochondrial ADP/ATP carrier functions as a monomer in mitochondrial membranes
    Bamber, Lisa
    Harding, Marilyn
    Monne, Magnus
    Slotboom, Dirk-Jan
    Kunji, Edmund R. S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (26) : 10830 - 10834
  • [5] Yeast mitochondrial ADP/ATP carriers are monomeric in detergents
    Bamber, Lisa
    Harding, Marilyn
    Butler, P. Jonathan G.
    Kunji, Edmund R. S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (44) : 16224 - 16229
  • [6] Iron-sulfur cluster biosynthesis
    Bandyopadhyay, Sibali
    Chandramouli, Kala
    Johnson, Michael K.
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 2008, 36 : 1112 - 1119
  • [7] THE SIGNAL THAT SORTS YEAST CYTOCHROME-B2 TO THE MITOCHONDRIAL INTERMEMBRANE SPACE CONTAINS 3 DISTINCT FUNCTIONAL REGIONS
    BEASLEY, EM
    MULLER, S
    SCHATZ, G
    [J]. EMBO JOURNAL, 1993, 12 (06) : 2303 - 2311
  • [8] Mitochondrial Outer Membrane Channels: Emerging Diversity in Transport Processes
    Becker, Thomas
    Wagner, Richard
    [J]. BIOESSAYS, 2018, 40 (07)
  • [9] The bacterial Entner-Doudoroff pathway does not replace glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron-sulfur cluster enzyme 6-phosphogluconate dehydratase
    Benisch, Feline
    Boles, Eckhard
    [J]. JOURNAL OF BIOTECHNOLOGY, 2014, 171 : 45 - 55
  • [10] Metabolic engineering of Yarrowia lipolytica for itaconic acid production
    Blazeck, John
    Hill, Andrew
    Jamoussi, Mariam
    Pan, Anny
    Miller, Jarrett
    Alper, Hal S.
    [J]. METABOLIC ENGINEERING, 2015, 32 : 66 - 73