Some results on entropy and sequence entropy

被引:12
作者
Balibrea, F
López, VJ
Peña, JSC
机构
[1] Univ Murcia, Dept Matemat, Murcia 30100, Spain
[2] Escuela Politecn Cartagena, Dept Matemat Aplicada, Cartagena 30203, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1999年 / 9卷 / 09期
关键词
D O I
10.1142/S0218127499001218
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study some formulas involving metric and topological entropy and sequence entropy. We summarize some classical formulas satisfied by metric and topological entropy and ask the question whether the same or similar results hold for sequence entropy. In general the answer is negative; still some questions involving these formulas remain open. We make a special emphasis on the commutativity formula for topological entropy h(f circle g) = h(g circle f) recently proved by Kolyada and Snoha. We give a new elementary proof and use similar ideas to prove commutativity formulas for metric entropy and other topological invariants. Finally we prove a Misiurewicz-Szlenk type inequality for topological sequence entropy for piecewise monotone maps on the interval I = [0, 1]. For this purpose we introduce the notion of upper entropy.
引用
收藏
页码:1731 / 1742
页数:12
相关论文
共 20 条
[1]  
24Walters P., 2000, An Introduction to Ergodic Theory, V79
[2]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[3]  
Alseda L., 1993, ADV SERIES NONLINEAR, V5
[4]  
BALIBREA F, 1997, DINAMICA TRANSFORMAC
[5]  
BLOKH A, 1995, DYNAMICS REPORTED, V4
[7]  
Denker M., 1976, Ergodic Theory on Compact Spaces, VVol. 527
[8]   POSITIVE SEQUENCE TOPOLOGICAL-ENTROPY CHARACTERIZES CHAOTIC MAPS [J].
FRANZOVA, N ;
SMITAL, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (04) :1083-1086
[9]   Rotation and entropy [J].
Geller, W ;
Misiurewicz, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (07) :2927-2948
[10]  
GOODMAN TNT, 1974, P LOND MATH SOC, V29, P331