New convolution identities for hypergeometric Bernoulli polynomials

被引:5
作者
Nguyen, Hieu D. [1 ]
Cheong, Long G. [1 ]
机构
[1] Rowan Univ, Dept Math, Glassboro, NJ 08028 USA
关键词
Hypergeometric Bernoulli; polynomial; Appall sequence; Convolution; Sums of products; PRODUCTS; SUMS;
D O I
10.1016/j.jnt.2013.11.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New convolution identities of hypergeometric Bernoulli polynomials are presented. Two different approaches to proving these identities are discussed, corresponding to the two equivalent definitions of hypergeometric Bernoulli polynomials as Appell sequences. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:201 / 221
页数:21
相关论文
共 6 条
[1]   Sums of products of Bernoulli numbers [J].
Dilcher, K .
JOURNAL OF NUMBER THEORY, 1996, 60 (01) :23-41
[2]   HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES [J].
Hassen, Abdul ;
Nguyen, Hieu D. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (05) :767-774
[3]   HYPERGEOMETRIC ZETA FUNCTIONS [J].
Hassen, Abdul ;
Nguyen, Hieu D. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (01) :99-126
[4]   Sums of products of hypergeometric Bernoulli numbers [J].
Kamano, Ken .
JOURNAL OF NUMBER THEORY, 2010, 130 (10) :2259-2271
[5]  
NGUYEN H, 2013, INTEGERS, V13, pA11
[6]  
Nguyen H. D., 2013, INTEGERS, VA11, P1