Weather Map Prediction Using RGB Metaphorical Feature Extraction for Atmospheric Pressure Patterns

被引:0
作者
Hakii, Takeru [1 ]
Shimada, Koshi [2 ]
Nakanishi, Takafumi [3 ]
Okada, Ryotaro [3 ]
Matsuda, Keigo [4 ]
Onishi, Ryo [5 ]
Takahashi, Keiko [4 ]
机构
[1] Univ Tokyo, Ctr Global Commun, Tokyo, Japan
[2] Waseda Univ, Ctr Global Commun, Tokyo, Japan
[3] Musashino Univ, Ctr Global Commun, Tokyo, Japan
[4] Japan Agcy Marine Earth Sci & Technol, Tokyo, Japan
[5] Japan Agcy Marine Earth Sci & Technol, Tokyo Inst Technol, Tokyo, Japan
来源
2021 IEEE/ACIS 20TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2021-SUMMER) | 2021年
关键词
Weather Map; pix2pix; Meteorological Forecasting; Meteorological Data;
D O I
10.1109/ICIS51600.2021.9516859
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a weather map prediction method using RGB metaphorical feature extraction for atmospheric pressure patterns. In the field of meteorological science, predicting weather based on the analysis of observational data and the knowledge of weather experts is crucial. Weather experts draw weather maps based on air pressure distribution; hence, we believe that weather maps entail the interpretations of weather experts. In this study, we improved the prediction accuracy by using machine learning to recognize patterns of qualitative expert interpretations that cannot be predicted by analyzing observed data alone. The proposed method can be realized via two steps. The first is developing a module for extracting pressure pattern features from a weather map. Certain features, such as tropical cyclones or atmospheric high/low pressure distributions, are emphasized in weather maps to facilitate better understanding of the weather features. Therefore, we can predict weather features based on the knowledge of weather experts using data that contain their interpretations, particularly weather maps. The developed module extracts the atmospheric pressure features from the current weather map as an RGB metaphorical gradation map. The second step is developing a module to design a predicted weather map using the extracted features. The weather map of the following day is predicted using pix2pix. To the best of our knowledge, our method for extracting features from weather maps is the first to create a predicted weather map automatically.
引用
收藏
页码:22 / 28
页数:7
相关论文
empty
未找到相关数据