ARITHMETIC PROPERTIES OF SIGNED SELMER GROUPS AT NON-ORDINARY PRIMES

被引:19
作者
Hatley, Jeffrey [1 ]
Lei, Antonio [2 ]
机构
[1] Union Coll, Dept Math, Bailey Hall 202, Schenectady, NY 12308 USA
[2] Univ Laval, Dept Math & Stat, Pavillon Alexandre Vachon, Quebec City, PQ G1V 0A6, Canada
关键词
Cyclotomic extensions; Selmer groups; modular forms; non-ordinary primes; IWASAWA THEORY; ELLIPTIC-CURVES; INVARIANTS; FORMULA; MAZUR;
D O I
10.5802/aif.3270
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend many results on Selmer groups for elliptic curves and modular forms to the non-ordinary setting. More precisely, we study the signed Selmer groups defined using the machinery of Wach modules over Z(p)-cyclotomic extensions. First, we provide a definition of residual and non-primitive Selmer groups at non-ordinary primes. This allows us to extend techniques developed by Greenberg (for p-ordinary elliptic curves) and Kim (p-supersingular elliptic curves) to show that if two p-non-ordinary modular forms are congruent to each other, then the Iwasawa invariants of their signed Selmer groups are related in an explicit manner. Our results have several applications. First of all, this allows us to relate the parity of the analytic ranks of such modular forms generalizing a recent result of the first-named author for p-supersingular elliptic curves. Second, we can prove a Kida-type formula for the signed Selmer groups generalizing results of Pollack and Weston.
引用
收藏
页码:1259 / 1294
页数:36
相关论文
共 33 条
[1]   Construction of some families of 2-dimensional crystalline representations [J].
Berger, L ;
Li, HF ;
Zhu, HJ .
MATHEMATISCHE ANNALEN, 2004, 329 (02) :365-377
[2]   Limits of crystalline representations [J].
Berger, L .
COMPOSITIO MATHEMATICA, 2004, 140 (06) :1473-1498
[3]  
Berger Laurent, 2003, DOC MATH, P99
[4]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[5]  
Deligne P., 1969, Seminaire Bourbaki, Expose, V355, P139
[6]   The Tamagawa number conjecture of adjoint motives of modular forms [J].
Diamond, F ;
Flach, M ;
Guo, L .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2004, 37 (05) :663-727
[7]   Variation of Iwasawa invariants in Hida families [J].
Emerton, M ;
Pollack, R ;
Weston, T .
INVENTIONES MATHEMATICAE, 2006, 163 (03) :523-580
[8]  
FLACH M, 1990, J REINE ANGEW MATH, V412, P113
[9]   On the Iwasawa invariants of elliptic curves [J].
Greenberg, R ;
Vatsal, V .
INVENTIONES MATHEMATICAE, 2000, 142 (01) :17-63
[10]  
Greenberg R, 1999, LECT NOTES MATH, V1716, P51