Synthesis and performance of palladium-based catalysts for methanol and ethanol oxidation in alkaline fuel cells

被引:82
作者
An, Hao [1 ]
Pan, Linna [1 ]
Cui, Hao [1 ]
Li, Baojv [1 ]
Zhou, Dandan [1 ]
Zhai, Jianping [1 ]
Li, Qin [1 ]
机构
[1] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210046, Jiangsu, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Direct alcohols fuel cell; Palladium; Tin oxide; Electrocatalyst; Alkaline media; WALLED CARBON NANOTUBES; OXYGEN REDUCTION; ANODE ELECTROCATALYSTS; ALCOHOL OXIDATION; FORMIC-ACID; ELECTROOXIDATION; NANOPARTICLES; PD; RU; SUPPORT;
D O I
10.1016/j.electacta.2013.03.142
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Pd/tin oxide-titanium dioxide/multiwalled carbon nanotubes (Pd/SnO2-TiO2/MWCNT) have been synthesized according to a facile and controllable in situ chemical method and their performances in methanol and ethanol oxidation reactions evaluated. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses revealed the beneficial effects of the SnO2 component in the Pd/SnO2-TiO2/MWCNT, indicating that the metallic-state Pd nanoparticles were uniformly dispersed onto the SnO2-TiO2 precursor anchored onto the MWCNT. Electrochemical characterization techniques, including cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS) measurements were used to analyze the electrochemical performance of the Pd/SnO2-TiO2/MWCNT relative to Pd/MWCNT. The results revealed that the Pd/SnO2-TiO2/MWCNT provided excellent and superior levels of performance in terms of their electrocatalytic activity, electrochemical active surface (EAS), carbon monoxide (CO) tolerance and stability for both methanol and ethanol oxidation in alkaline solution. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:79 / 87
页数:9
相关论文
共 44 条
  • [1] Pt-NiO/C anode electrocatalysts for direct methanol fuel cells
    Amin, R. S.
    Hameed, R. M. Abdel
    El-Khatib, K. M.
    Youssef, M. Elsayed
    Elzatahry, A. A.
    [J]. ELECTROCHIMICA ACTA, 2012, 59 : 499 - 508
  • [2] An H, 2010, ELECTROCHIM ACTA, P111, DOI DOI 10.1016/J.ELECTACTA.2012.12
  • [3] Alkaline direct alcohol fuel cells
    Antolini, E.
    Gonzalez, E. R.
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (11) : 3431 - 3450
  • [4] Palladium in fuel cell catalysis
    Antolini, Ermete
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (09) : 915 - 931
  • [5] Nafion-TiO2 composite DMFC membranes:: physico-chemical properties of the filler versus electrochemical performance
    Baglio, V
    Aricò, AS
    Di Blasi, A
    Antonucci, V
    Antonucci, PL
    Licoccia, S
    Traversa, E
    Fiory, FS
    [J]. ELECTROCHIMICA ACTA, 2005, 50 (05) : 1241 - 1246
  • [6] Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol)
    Bambagioni, Valentina
    Bianchini, Claudio
    Marchionni, Andrea
    Filippi, Jonathan
    Vizza, Francesco
    Teddy, Jacques
    Serp, Philippe
    Zhiani, Mohammad
    [J]. JOURNAL OF POWER SOURCES, 2009, 190 (02) : 241 - 251
  • [7] Ethanol oxidation on carbon supported platinum-rhodium bimetallic catalysts
    Bergamaski, Kleber
    Gonzalez, Ernesto Rafael
    Nart, Francisco Carlos
    [J]. ELECTROCHIMICA ACTA, 2008, 53 (13) : 4396 - 4406
  • [8] Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells
    Bianchini, Claudio
    Shen, Pei Kang
    [J]. CHEMICAL REVIEWS, 2009, 109 (09) : 4183 - 4206
  • [9] PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review
    Brouzgou, A.
    Podias, A.
    Tsiakaras, P.
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 2013, 43 (02) : 119 - 136
  • [10] Novel catalyst-support interaction for direct formic acid fuel cell anodes: Pd electrodeposition on surface-modified graphite felt
    Cheng, Tommy T.
    Gyenge, Elod L.
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 2009, 39 (10) : 1925 - 1938