Asymptotically the list colouring constants are 1

被引:23
作者
Reed, B [1 ]
Sudakov, B
机构
[1] CNRS, Paris, France
[2] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[3] Princeton Univ, Dept Math, Princeton, NJ 08540 USA
[4] Inst Adv Study, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jctb.2002.2110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the following result about vertex list colourings, which shows that a conjecture of the first author (1999, J. Graph Theory 31, 149-153) is asymptotically correct. Let G be a graph with the sets of lists S(v), satisfying that for every vertex \S(nu)\ = (1 + o(1))d and for each colour c is an element of S(nu), the number of neighbours of v that have c in their list is at most d. Then there exists a proper colouring of G from these lists. (C) 2002 Elsevier Science (USA)
引用
收藏
页码:27 / 37
页数:11
相关论文
共 12 条
[1]  
Alon N., 2000, PROBABILISTIC METHOD
[2]  
[Anonymous], 2001, GRAPH COLOURING PROB
[3]  
BOHMAN T, LIST COLORING CONJEC
[4]   COMPLETE SUBGRAPHS OF R-CHROMATIC GRAPHS [J].
BOLLOBAS, B ;
ERDOS, P ;
SZEMEREDI, E .
DISCRETE MATHEMATICS, 1975, 13 (02) :97-107
[5]   THE LIST CHROMATIC INDEX OF A BIPARTITE MULTIGRAPH [J].
GALVIN, F .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (01) :153-158
[6]  
HAXELL P, NOTE VERTEX LIST COL
[7]  
Jensen T, 1995, Graph Colouring Problems
[8]  
KAHN J., 1997, Algorithms Combin., V13, P345, DOI DOI 10.1007/978-3-642-60408-926
[9]  
Molloy M., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P524, DOI 10.1145/276698.276866
[10]  
Reed B, 1999, J GRAPH THEOR, V31, P149, DOI 10.1002/(SICI)1097-0118(199906)31:2<149::AID-JGT8>3.3.CO