APPROXIMATION BY BEZIER VARIANT OF JAKIMOVSKI-LEVIATAN-PALTANEA OPERATORS INVOLVING SHEFFER POLYNOMIALS

被引:4
作者
Agrawal, P. N. [1 ]
Kumar, Ajay [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttarakhand, India
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2020年 / 69卷 / 02期
关键词
Positive linear operators; rate of convergence; modulus of continuity; total variation; Sheffer polynomials; CONVERGENCE;
D O I
10.31801/cfsuasmas.750568
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, the Bezier variant of Jakimovski-Leviatan-Paltanea operators involving Sheffer polynomials is introduced and the degree of approximation by these operators is investigated with the aid of Ditzian-Totik modulus of smoothness, Lipschitz type space and for functions with derivatives of bounded variations.
引用
收藏
页码:1522 / 1536
页数:15
相关论文
共 17 条
[1]  
Abel U., 2003, DEMONSTR MATH, V36, P123, DOI DOI 10.1515/DEMA-2003-0114
[2]   Approximation properties of Bezier-summation-integral type operators based on Polya-Bernstein functions [J].
Agrawal, P. N. ;
Ispir, Nurhayat ;
Kajla, Arun .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 :533-539
[3]  
DITZIAN Z., 1987, SPRINGER SER COMPUT, V9
[4]  
Goyal M., 2017, ANN U FERRARA, V63, P289, DOI DOI 10.1007/S11565-017-0288-9
[5]  
[郭顺生 Guo Shunsheng], 2010, [数学物理学报. A辑, Acta Mathematica Scientia], V30, P1424
[6]  
Ismail M.E.H., 1974, MATH CLUJ, V39, P259
[7]  
Ispir N, 2005, APPL MATH E-NOTES, V5, P129
[8]  
Jakimovski A., 1969, MATH CLUJ, V11, P97
[9]   Approximation by Jakimovski-Leviatan-Paltanea operators involving Sheffer polynomials [J].
Mursaleen, M. ;
AL-Abeid, A. A. H. ;
Ansari, Khursheed J. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) :1251-1265
[10]   LOCAL APPROXIMATION BEHAVIOR OF MODIFIED SMK OPERATORS [J].
Ozarslan, M. Ali ;
Duman, Oktay .
MISKOLC MATHEMATICAL NOTES, 2010, 11 (01) :87-99