Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation

被引:16
|
作者
Ha, Seung-Yeal [1 ,2 ]
Xiao, Qinghua [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[3] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
基金
新加坡国家研究基金会;
关键词
SYNCHRONIZATION; OSCILLATORS; POPULATIONS; SYSTEMS; LIMIT;
D O I
10.1016/j.jde.2015.03.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a nonlinear stability estimate of the incoherent solution to the Kuramoto-Sakaguchi equation using energy estimates. Our global stability analysis does not require the amplitude of the solution to be small, as long as the ratio of diffusion strength to coupling strength is sufficiently large. We also show that the Kuramoto-Sakaguchi equation is L-2-contractive in the perturbed regime of the incoherent solution. Moreover, we establish the L-infinity-convergence in any finite time interval from the Kuramoto-Sakaguchi equation to the Kuramoto equation as the diffusion coefficient goes to zero. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:2430 / 2457
页数:28
相关论文
共 50 条