Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation

被引:16
|
作者
Ha, Seung-Yeal [1 ,2 ]
Xiao, Qinghua [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[3] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
基金
新加坡国家研究基金会;
关键词
SYNCHRONIZATION; OSCILLATORS; POPULATIONS; SYSTEMS; LIMIT;
D O I
10.1016/j.jde.2015.03.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a nonlinear stability estimate of the incoherent solution to the Kuramoto-Sakaguchi equation using energy estimates. Our global stability analysis does not require the amplitude of the solution to be small, as long as the ratio of diffusion strength to coupling strength is sufficiently large. We also show that the Kuramoto-Sakaguchi equation is L-2-contractive in the perturbed regime of the incoherent solution. Moreover, we establish the L-infinity-convergence in any finite time interval from the Kuramoto-Sakaguchi equation to the Kuramoto equation as the diffusion coefficient goes to zero. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:2430 / 2457
页数:28
相关论文
共 50 条
  • [31] Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators
    Yue, Wenqi
    Smith, Lachlan D.
    Gottwald, Georg A.
    PHYSICAL REVIEW E, 2020, 101 (06)
  • [32] Chimera dynamics of generalized Kuramoto-Sakaguchi oscillators in two-population networks
    Lee, Seungjae
    Krischer, Katharina
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (40)
  • [33] Synchronization transitions in adaptive Kuramoto-Sakaguchi oscillators with higher-order interactions
    Sharma, Abhishek
    Rajwani, Priyanka
    Jalan, Sarika
    CHAOS, 2024, 34 (08)
  • [34] Competing influence of common noise and desynchronizing coupling on synchronization in the Kuramoto-Sakaguchi ensemble
    Goldobin, Denis S.
    Pimenova, Anastasiya V.
    Rosenblum, Michael
    Pikovsky, Arkady
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (09): : 1921 - 1937
  • [35] Nonlinear Instability of the Incoherent State for the Kuramoto–Sakaguchi–Fokker–Plank Equation
    Seung-Yeal Ha
    Qinghua Xiao
    Journal of Statistical Physics, 2015, 160 : 477 - 496
  • [36] Competing influence of common noise and desynchronizing coupling on synchronization in the Kuramoto-Sakaguchi ensemble
    Denis S. Goldobin
    Anastasiya V. Pimenova
    Michael Rosenblum
    Arkady Pikovsky
    The European Physical Journal Special Topics, 2017, 226 : 1921 - 1937
  • [37] Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise
    Gong, Chen Chris
    Zheng, Chunming
    Toenjes, Ralf
    Pikoysky, Arkady
    CHAOS, 2019, 29 (03)
  • [38] Optimal cost tuning of frustration: Achieving desired states in the Kuramoto-Sakaguchi model
    Rosell-Tarrago, Gemma
    Diaz-Guilera, Albert
    PHYSICAL REVIEW E, 2021, 103 (01)
  • [39] REMARKS ON THE NONLINEAR STABILITY OF THE KURAMOTO MODEL WITH INERTIA
    Choi, Young-Pil
    Ha, Seung-Yeal
    Noh, Se Eun
    QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (02) : 391 - 399
  • [40] Two-network Kuramoto-Sakaguchi model under tempered stable Levy noise
    Kalloniatis, Alexander C.
    McLennan-Smith, Timothy A.
    Roberts, Dale O.
    Zuparic, Mathew L.
    PHYSICAL REVIEW E, 2019, 99 (01)