Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation

被引:16
|
作者
Ha, Seung-Yeal [1 ,2 ]
Xiao, Qinghua [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[3] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
基金
新加坡国家研究基金会;
关键词
SYNCHRONIZATION; OSCILLATORS; POPULATIONS; SYSTEMS; LIMIT;
D O I
10.1016/j.jde.2015.03.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a nonlinear stability estimate of the incoherent solution to the Kuramoto-Sakaguchi equation using energy estimates. Our global stability analysis does not require the amplitude of the solution to be small, as long as the ratio of diffusion strength to coupling strength is sufficiently large. We also show that the Kuramoto-Sakaguchi equation is L-2-contractive in the perturbed regime of the incoherent solution. Moreover, we establish the L-infinity-convergence in any finite time interval from the Kuramoto-Sakaguchi equation to the Kuramoto equation as the diffusion coefficient goes to zero. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:2430 / 2457
页数:28
相关论文
共 50 条
  • [1] NONLINEAR STABILITY OF STATIONARY SOLUTIONS TO THE KURAMOTO-SAKAGUCHI EQUATION WITH FRUSTRATION
    Ha, Seung-Yeal
    Park, Hansol
    Zhang, Yinglong
    NETWORKS AND HETEROGENEOUS MEDIA, 2020, 15 (03) : 427 - 461
  • [2] The Kuramoto-Sakaguchi nonlinear parabolic integrodifferential equation
    Lavrentiev, M
    Spigler, R
    PARTIAL DIFFERENTIAL EQUATIONS: THEORY AND NUMERICAL SOLUTION, 2000, 406 : 248 - 253
  • [3] Configurational stability for the Kuramoto-Sakaguchi model
    Bronski, Jared C.
    Carty, Thomas
    DeVille, Lee
    CHAOS, 2018, 28 (10)
  • [4] Emergence of phase concentration for the Kuramoto-Sakaguchi equation
    Ha, Seung-Yeal
    Kim, Young-Heon
    Morales, Javier
    Park, Jinyeong
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 401
  • [5] From the Kuramoto-Sakaguchi model to the Kuramoto-Sivashinsky equation
    Kawamura, Yoji
    PHYSICAL REVIEW E, 2014, 89 (01)
  • [6] Spectral analysis and computation for the Kuramoto-Sakaguchi integroparabolic equation
    Acebrón, JA
    Lavrentiev, MM
    Spigler, R
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (01) : 239 - 263
  • [7] ASYMPTOTIC STABILITY OF THE PHASE-HOMOGENEOUS SOLUTION TO THE KURAMOTO-SAKAGUCHI EQUATION WITH INERTIA
    Choi, Young-Pil
    Ha, Seung-Yeal
    Xiao, Qinghua
    Zhang, Yinglong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (03) : 3188 - 3235
  • [8] A DIFFUSION LIMIT FOR THE PARABOLIC KURAMOTO-SAKAGUCHI EQUATION WITH INERTIA
    Ha, Seung-Yeal
    Shim, Woojoo
    Zhang, Yinglong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 1591 - 1638
  • [9] KURAMOTO ORDER PARAMETERS AND PHASE CONCENTRATION FOR THE KURAMOTO-SAKAGUCHI EQUATION WITH FRUSTRATION
    Ha, Seung-Yeal
    Morales, Javier
    Zhang, Yinglong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (7-8) : 2579 - 2612
  • [10] A Nonlocal Version of Wavefront Tracking Motivated by Kuramoto-Sakaguchi Equation
    Amadori, Debora
    Ha, Seung-Yeal
    Park, Jinyeong
    INNOVATIVE ALGORITHMS AND ANALYSIS, 2017, 16 : 1 - 24