Positive Ground State Solutions for a Critical Nonlocal Problem in Dimension Three

被引:1
作者
Qian Xiaotao [1 ]
机构
[1] Yango Univ, Dept Basic Teaching & Res, Fuzhou 350015, Peoples R China
来源
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS | 2022年 / 35卷 / 04期
基金
中国国家自然科学基金;
关键词
Nonlocal problem; critical exponent; positive solutions; variational methods; KIRCHHOFF TYPE PROBLEM; EXISTENCE;
D O I
10.4208/jpde.v35.n4.6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested in the following nonlocal problem with critical exponent {- ( a - b integral(Omega) |del u|(2)dx) Delta u = lambda|u|(p-2) u +|u|(4)u, x is an element of Omega, u = 0, x is an element of partial derivative Omega, where a,b are positive constants, 2< p < 6, Omega is a smooth bounded domain in R-3 and lambda > 0 is a parameter. By variational methods, we prove that problem has a positive ground state solution u(b) for lambda > 0 sufficiently large. Moreover, we take b as a parameter and study the asymptotic behavior of u(b) when b SE arrow 0.
引用
收藏
页码:382 / 394
页数:13
相关论文
共 24 条
[1]   ON A CLASS OF NONLOCAL ELLIPTIC PROBLEMS WITH CRITICAL GROWTH [J].
Alves, C. O. ;
Correa, F. J. S. A. ;
Figueiredo, G. M. .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2010, 2 (03) :409-417
[2]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[3]   Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument [J].
Figueiredo, Giovany M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (02) :706-713
[4]   A critical Kirchhoff type problem involving a nonlocal operator [J].
Fiscella, Alessio ;
Valdinoci, Enrico .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 94 :156-170
[5]   New class of sixth-order nonhomogeneous p(x)-Kirchhoff problems with sign-changing weight functions [J].
Hamdani, Mohamed Karim ;
Nguyen Thanh Chung ;
Repovs, Dusan D. .
ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) :1117-1131
[6]  
Hamdani MK, 2021, J ELLIPTIC PARABOL, V7, P243, DOI 10.1007/s41808-020-00093-7
[7]   Existence and multiplicity results for a new p(x)-Kirchhoff problem [J].
Hamdani, Mohamed Karim ;
Harrabi, Abdellaziz ;
Mtiri, Foued ;
Repovs, Dusan D. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190
[8]   Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3 [J].
He, Xiaoming ;
Zou, Wenming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :1813-1834
[9]  
Kirchhoff G., 1883, Mechanik
[10]  
Lei CY, 2017, ELECTRON J DIFFER EQ