A Full-FoV Autonomous Hybrid Beamformer Array With Unknown Blockers Rejection and Signals Tracking for Low-Latency 5G mm-Wave Links

被引:32
作者
Huang, Min-Yu [1 ]
Chi, Taiyun [1 ]
Wang, Fei [1 ]
Li, Tso-Wei [1 ]
Wang, Hua [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30308 USA
关键词
Beamforming; blocker rejection; closed loop; field-of-view (FoV); 5G; low latency; millimeter wave (mm-Wave); multiple-input-multiple-output (MIMO); phased array; receiver; self-steering; BROAD-BAND; ANTENNA; TRANSCEIVER; NETWORK; PHASE;
D O I
10.1109/TMTT.2019.2906602
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper demonstrates an eight-element multiple-input- multiple-output (MIMO) hybrid beamforming receiver array with autonomous millimeter-wave (mm-Wave)/RF front-end beamforming and digital baseband beamforming. It enables autonomous dynamic suppression of unknown blockers and beamforming on unknown desired signals, without knowing their carrier frequency, angle-of-arrival (AoA), and modulation scheme as a priori. After autonomous cancellation of an in-band/cochannel wideband-modulated blocker, a wideband-modulated desired signal is measured with high SNR, achieving -25.7-dB EVM for 6-Gb/ s 64 QAM and -31.8-dB EVM for 1.6-Gb/s 256 QAM. Without baseband DSP beam-searching, the closed-loop mm-Wave/RF front-end beamformer (BF) realizes <1-mu s rapid response per stage, 100-to-1000x faster than existing mm-Wave analog/digital BFs with DSP beam-searching. The eight-element MIMO receiver array covers a wide frequency range (23-30 GHz) and the full field-of-view (FoV) to address future low-latency applications of practical 5G MIMO systems. To the best of our knowledge, this is the first MIMO receiver array enabling autonomous wideband-modulated 64-/256-QAM blocker rejection and desired signal beamforming with mu s response time.
引用
收藏
页码:2964 / 2974
页数:11
相关论文
共 28 条
[1]  
Chi TY, 2017, ISSCC DIG TECH PAP I, P296, DOI 10.1109/ISSCC.2017.7870378
[2]  
Chi TY, 2017, ISSCC DIG TECH PAP I, P304, DOI 10.1109/ISSCC.2017.7870382
[3]   A 60-GHz Transceiver and Baseband With Polarization MIMO in 28-nm CMOS [J].
Dasgupta, Kaushik ;
Daneshgar, Saeid ;
Thakkar, Chintan ;
Kang, Shinwon ;
Chakrabarti, Anandaroop ;
Yamada, Shuhei ;
Narevsky, Nathan ;
Choudhury, Debabani ;
Jaussi, James E. ;
Casper, Bryan .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (12) :3613-3627
[4]  
Dunworth JD, 2018, ISSCC DIG TECH PAP I, P70, DOI 10.1109/ISSCC.2018.8310188
[5]  
Garay E, 2018, IEEE MTT S INT MICR, P79, DOI 10.1109/MWSYM.2018.8439334
[6]   A Self-Steering Receiver Array Using Jointly Coupled Oscillators and Phased-Locked Loops [J].
Gupta, Arpit K. ;
Buckwalter, James F. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2014, 62 (03) :631-644
[7]   Large-Scale Antenna Systems with Hybrid Analog and Digital Beamforming for Millimeter Wave 5G [J].
Han, Shuangfeng ;
Chih-Lin, I ;
Xu, Zhikun ;
Rowell, Corbett .
IEEE COMMUNICATIONS MAGAZINE, 2015, 53 (01) :186-194
[8]   Self-Calibration of a 3-D-Digital Beamforming Radar System for Automotive Applications With Installation Behind Automotive Covers [J].
Harter, Marlene ;
Hildebrandt, Juergen ;
Ziroff, Andreas ;
Zwick, Thomas .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2016, 64 (09) :2994-3000
[9]  
Huang M.-Y., 2016, IEEE MTT S INT MICR, P1, DOI DOI 10.1109/TCST.2016.2529503
[10]  
Huang MY, 2018, ISSCC DIG TECH PAP I, P68, DOI 10.1109/ISSCC.2018.8310187