Invariant analysis and explicit solutions of the time fractional nonlinear perturbed Burgers equation

被引:17
作者
Wang, Gangwei [1 ]
Xu, Tianzhou [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2015年 / 20卷 / 04期
基金
中国国家自然科学基金;
关键词
perturbed Burgers equation; Lie group analysis; symmetry reductions; power series method; explicit solutions; LIE SYMMETRY ANALYSIS; SOLITONS;
D O I
10.15388/NA.2015.4.8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lie group analysis method is performed for the nonlinear perturbed Burgers equation and the time fractional nonlinear perturbed Burgers equation. All of the point symmetries of the equations are constructed. In view of the point symmetries, the vector fields of the equations are constructed. Subsequently, the symmetry reductions are investigated. In particular, some novel exact and explicit solutions are obtained.
引用
收藏
页码:570 / 584
页数:15
相关论文
共 32 条
[21]  
Ovsiannikov L. V., 1982, Group Analysis of Differential Equations
[22]   Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations [J].
Sahadevan, R. ;
Bakkyaraj, T. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (02) :341-347
[23]  
Wang GW, 2014, ROM J PHYS, V59, P636
[24]  
Wang GW, 2014, ROM REP PHYS, V66, P595
[25]   Lie Symmetry Analysis and Explicit Solutions of the Time Fractional Fifth-Order KdV Equation [J].
Wang, Gang Wei ;
Xu, Tian Zhou ;
Feng, Tao .
PLOS ONE, 2014, 9 (02)
[26]  
Wang GW, 2014, B MALAYS MATH SCI SO, V37, P769
[27]   Invariant analysis and exact solutions of nonlinear time fractional Sharma-Tasso-Olver equation by Lie group analysis [J].
Wang, Gang-Wei ;
Xu, Tian-Zhou .
NONLINEAR DYNAMICS, 2014, 76 (01) :571-580
[28]   Lie symmetry analysis to the time fractional generalized fifth-order KdV equation [J].
Wang, Gang-wei ;
Liu, Xi-qiang ;
Zhang, Ying-yuan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (09) :2321-2326
[29]   Symmetry reduction, exact solutions and conservation laws of a new fifth-order nonlinear integrable equation [J].
Wang, Gang-wei ;
Liu, Xi-qiang ;
Zhang, Ying-yuan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (09) :2313-2320
[30]   Symmetry properties and explicit solutions of the nonlinear time fractional KdV equation [J].
Wang, Gangwei ;
Xu, Tianzhou .
BOUNDARY VALUE PROBLEMS, 2013,