Invariant analysis and explicit solutions of the time fractional nonlinear perturbed Burgers equation

被引:17
作者
Wang, Gangwei [1 ]
Xu, Tianzhou [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2015年 / 20卷 / 04期
基金
中国国家自然科学基金;
关键词
perturbed Burgers equation; Lie group analysis; symmetry reductions; power series method; explicit solutions; LIE SYMMETRY ANALYSIS; SOLITONS;
D O I
10.15388/NA.2015.4.8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lie group analysis method is performed for the nonlinear perturbed Burgers equation and the time fractional nonlinear perturbed Burgers equation. All of the point symmetries of the equations are constructed. In view of the point symmetries, the vector fields of the equations are constructed. Subsequently, the symmetry reductions are investigated. In particular, some novel exact and explicit solutions are obtained.
引用
收藏
页码:570 / 584
页数:15
相关论文
共 32 条
[1]  
[Anonymous], 1994, GEN FRACTIONAL CALCU
[2]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]  
[Anonymous], 1986, APPL LIE GROUP DIFFE, DOI DOI 10.1007/978-1-4684-0274-2
[5]   1-Soliton solution of the generalized Burgers equation with generalized evolution [J].
Biswas, Anjan ;
Triki, Houria ;
Hayat, T. ;
Aldossary, Omar M. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (24) :10289-10294
[6]  
Bluman G. W., 2013, Symmetries and Differential Equations, V81
[7]   Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations [J].
Buckwar, E ;
Luchko, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 227 (01) :81-97
[8]  
Diethelm K., 2010, LECT NOTES MATH
[9]   Similarity solutions to nonlinear heat conduction and Burgers/Korteweg-deVries fractional equations [J].
Djordjevic, Vladan D. ;
Atanackovic, Teodor M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 222 (02) :701-714
[10]  
Ebadi G, 2012, ROM REP PHYS, V64, P915