Asymptotic behavior and hypercontractivity in non-autonomous Ornstein-Uhlenbeck equations

被引:16
作者
Geissert, Matthias [1 ]
Lunardi, Alessandra [2 ]
机构
[1] Tech Univ Darmstadt, FB Math, D-64289 Darmstadt, Germany
[2] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2009年 / 79卷
关键词
SEMIGROUPS;
D O I
10.1112/jlms/jdn057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate a class of non-autonomous linear parabolic problems with time-depending Ornstein-Uhlenbeck operators. We study the asymptotic behavior of the associated evolution operator and evolution semigroup in the periodic and non-periodic situation. Moreover, we show that the associated evolution operator is hypercontractive.
引用
收藏
页码:85 / 106
页数:22
相关论文
共 14 条
[1]  
Chicone C., 1999, Math. Surveys Monogr., V70
[2]   Nonsymmetric Ornstein-Uhlenbeck semigroup as second quantized operator [J].
ChojnowskaMichalik, A ;
Goldys, B .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1996, 36 (03) :481-498
[3]   Ornstein-Uhlenbeck operators with time periodic coefficients [J].
Da Prato, Giuseppe ;
Lunardi, Alessandra .
JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (04) :587-614
[4]  
DAPRATO G, 2008, PROGR PROBABILITY, V59
[5]   3 CLASSES OF INFINITE-DIMENSIONAL DIFFUSIONS [J].
DYNKIN, EB .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 86 (01) :75-110
[6]  
Engel K. J., 2000, GRAD TEXT M, DOI 10.1007/b97696
[7]   Hypercontractivity properties of nonsymmetric Ornstein-Uhlenbeck semigroups in Hilbert spaces [J].
Fuhrman, M .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1998, 16 (02) :241-260
[8]   Invariant measures and maximal L2 regularity for nonautonomous Ornstein-Uhlenbeck equations [J].
Geissert, Matthias ;
Lunardi, Alessandra .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 :719-740
[9]  
Gikhman I.I., 1972, Stochastic differential equations
[10]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083